
User and
Programming Guide

Version 0.9
30th May 2006

2

Contents

1 Short overview 1

2 Installation 3

2.1 Requirements . 3

2.2 Installation . 4

User guide 8

3 Introduction 9

3.1 Quick “on the fly” tour . 9

3.2 The special plugin “grab” . 12

4 The command line interface 14

4.1 The command line parameters in detail 14

4.2 Parameters of the grabber driver . 22

4.2.1 Drivers on OSF Alpha systems 22

4.2.2 Drivers on Linux systems . 23

4.3 Configuration files . 25

5 The Graphical User Interface 27

5.1 The iceWing render chain . 27

5.2 The GUI commands . 28

5.2.1 iceWing main window . 28

5.2.2 Preferences button . 29

5.2.3 Commands in category “Other” 31

5.2.4 The “Plugin Info” window . 32

5.2.5 Category “Images” and image windows 35

5.2.6 Panning/Zooming the image windows 38

5.3 The GUI widgets . 39

Programming guide 40

i

6 iceWing Files 41
6.1 Filesystem hierarchy . 41
6.2 Headerfiles overview . 42

7 iceWing – A CASE Tool 43
7.1 Overview . 44
7.2 Communication between plugins . 47
7.3 Graphical abilities . 50

7.3.1 Generating a user interface . 50
7.3.2 Graphical display of data . 54
7.3.3 Further graphical functionalities 59

7.4 Further abilities . 61
7.5 Using external libraries . 64

Bibliography 65

Index 66

ii

1 Short overview

What’s all about?
iceWing, an Integrated Communication Environment Which Is Not Gesten (This is
a reference to an older program, the predecessor of iceWing.) is a graphical plugin
shell. It is optimized for image processing and vision system development. But its
use in totally different fields of research is as well possible, e.g. audio-stream pro-
cessing. Predefined or self-written plugins operate hierarchically on data provided by
other plugins and can also generate new data-streams, allowing flexible communica-
tion and interaction between these plugins. An important predefined plugin is the
grabbing plugin, which can read images from the disk in various image formats, from
grabber-hardware, e.g. V4L2-devices or FireWire, and also from external, network
wide processes via DACS streams.

Not being only a batch-plugin-shell iceWing is also a highly customizable GUI plat-
form for the plugins: It has a list of given GUI-elements and allows the plugins to
simply make use of them. So plugins can show the user their current status and can
let the user change parameters on the fly. Moreover methods of easy visualization of
plugin results are available. The plugins can open any number of windows and display
in these windows any data in a graphical form.

Where to get iceWing?
The Homepage for iceWing can be found at

http://icewing.sourceforge.net

There are two mailing lists dedicated to iceWing user and development discussion.
More infos about these mailing lists can be found at

http://sourceforge.net/mail/?group_id=151242

Additionally, the main author can be reached at
floemker@techfak.uni-bielefeld.de

Who did iceWing?
Program:

Frank Lömker, floemker@techfak.uni-bielefeld.de
This documentation:

Frank Lömker, floemker@techfak.uni-bielefeld.de
Initial installation and user guide: Andreas Hüwel, andreas.huewel@gmx.de
Programming guide translation of V0.8.1: Ilker Savas

1

http://icewing.sourceforge.net
http://sourceforge.net/mail/?group_id=151242

License
iceWing is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

iceWing is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA.

2

2 Installation

2.1 Requirements

Libraries needed iceWing is targeted at Unix-like operating systems and was actually
tested on Linux, Alpha/True64, Solaris, and Mac OSX. For compiling and using it
some programs and libraries must be installed:

• Basic commands like bunzip2, tar, make, makedepend, C compiler (probably
gcc) - nothing that a normal Unix installation does not provide.

• X11

• GTK V1.2, tested for version >=1.2.5, <2.0

Additional optional libraries extend the functionality of iceWing:

• gdk-pixbuf: Loading additional image-formats, tested for version >= 0.8.

• libjpeg: JPEG- and AVI-MJPEG-saving.

• libpng: PNG-saving and loading of PNG images with a depth of 16 bit.

• libz – used by the above optional PNG saving package.

• libraw1394, libdc1394: Grabbing from firewire cameras supporting the “Digital
Camera Specification”.

• unicap: Grabbing from different hardware devices.

• FFmpeg: Loading a wide variety of video formats. At least a version from the
18. of November, 2005 or later is needed, version 0.4.9-pre1 is too old.

Attention: You will always need the development files, especially header files, for
the different libraries. We will show for RedHat packages (rpm) how to verify that
everything is installed. Debian packages are quite similar. You can easily check with
the following shell command

> rpm -qa |grep gtk

which packages are installed and which version that libraries have. iceWing needs

3

the headers, too, and the given developer packets provide them. If you compile your
own libraries from sources, you have to add the headers into the default-include path,
so iceWing will find them. After verifying all this, you only need to get the iceWing
tarball “icewing-version.tar.bz2”.

Further stuff You can use DACS for your own iceWing plugins to communicate with
other external net wide processes. It works quite similar to Corba. You do not need
DACS for any iceWing internal communication (iceWing - plugin, plugin - plugin) or
to e.g. access files of the system. Additionally, iceWing has integrated support for
reading/publishing images to/from other programs and for remote control of plugin
sliders via DACS. If DACS is not available, these features can be disabled during
compiling.

More information about DACS can be found in the Web under this address:

http://www.techfak.uni-bielefeld.de/ags/ni/projects/dacs/

Many details of DACS are also in the dissertation of Niels Jungclaus [Jun98].

2.2 Installation

Lets assume you have the tarball in “./”. Then simply

> bunzip2 -c icewing-version.tar.bz2 | tar -xv

> cd icewing-version

where version is the particular iceWing version number you are using.

Adopt the Makefile to your system Now you have to edit the Makefile to adopt it
to your system and in- or exclude the support for additional packages. Mostly it will
be uncommenting some few lines that you probably will not need on your system.

PREFIX: It must be set to your installation place, for example “/usr/local”

FLAGS: Eventually you must adopt the compiler flags to your hardware (E.g.: You
might not have a Pentium/Athlon processor?)

WITH AV, WITH FIRE, WITH UNICAP: If included, iceWing will have support
for grabbing images from a camera. On Alpha/True64 systems an external
library – the AVlib – is needed. This library is written by the AG-AI and
supports grabbing of images via the Multi Media Extension MME. Composit
and SVideo cameras are supported. The value given to WITH AV specifies the
location of the AVlib.

4

http://www.techfak.uni-bielefeld.de/ags/ni/projects/dacs/

On Linux support for image grabbing is directly integrated into iceWing.
This gets activated if WITH AV is defined. Composite and SVideo cam-
eras are supported with the help of the “Video for Linux Two” interface
(see “http://linux.bytesex.org/v4l2/”). If additionally WITH FIRE is
defined FireWire (IEEE1394) cameras supporting the “Digital Camera Spec-
ification” are supported as well. Here, the external libraries libraw1394.a
and libdc1394 control.a are needed (see “http://www.linux1394.org/” and
“http://sourceforge.net/projects/libdc1394/”). WITH FIRE gives the
location of these two libraries.

By defining WITH UNICAP additionally to WITH AV support for the uni-
cap library gets integrated. Unicap provides a uniform API for different kinds
of video capture devices, e.g. IEEE1394, Video for Linux, and some other.
See “http://www.datafloater.de/unicap/” for details about this library.
WITH UNICAP gives the location of the unicap library.

WITH DACS: If included, iceWing will have support for DACS, which is like Corba
for network wide interprocess communication. Especially, iceWing will be able
to send and receive images and widget configurations via DACS communication
channels.

WITH GPB: Enables loading of images of other formats than “PNM” and “PNG”.
For this, the gdk-pixbuf library is used.

WITH JPG, WITH PNG, WITH ZLIB: Enables further image saving formats.
When all are commented, iceWing can only save the various “PNM” formats.
Moreover, iceWing will not be able to load 16 bit PNG images and movie files
in AVI containers encoded with the motion jpeg codec.

WITH FFMPEG: Enables loading of a wide variety of video formats by using the
FFmpeg library. See “http://www.ffmpeg.org” for further details about this
library. Without the FFmpeg library, iceWing can only handle AVI files with
the motion jpeg codec if WITH JPG is enabled.

During development of iceWing a CVS snapshot of the FFmpeg library from
the 18. of November, 2005 and a SVN snapshot from the 26. of May, 2006
were used. You can find the FFmpeg SVN snapshot version from May at the
iceWing homepage. The last release version at that date, version 0.4.9-pre1, is
too old and will not work. WITH FFMPEG gives the location of the extracted
FFmpeg archive, where the compiled sources of the library are expected.

So to add FFmpeg support, extract the FFmpeg archive, change to the extracted
directory, configure the library, and compile it. Installing the library is not
necessary. iceWing will use the include files and the static libraries directly from
this source directory.

5

http://linux.bytesex.org/v4l2/
http://www.linux1394.org/
http://sourceforge.net/projects/libdc1394/
http://www.datafloater.de/unicap/
http://www.ffmpeg.org

“make” it all After adopting the Makefile, you can build the installation files from
the sources:

> cd {wherever your sources are}
> make depend

> make

You must now login as admin/root, if $(PREFIX) is not writable for the current
user. The Makefile expects the directory that is named in $(PREFIX) to be existing
- if not:

> mkdir $(PREFIX)

The installation is now fully prepared. Now the time for installation has come!

> cd {wherever your sources are}
> make install

To all the cautious admins: You eventually want to check the groups and rights of
the new dirs now.

That’s it! For further details about what was done, just have insight into the
installation log file, which is located at “$(PREFIX)/share/log/iceWing.log”.

If the new “icewing”-executable is in the execute-path, you can right away start
“icewing”, the executable (see section 3.1 Quicktour). If you are interested in what is
where in this installation, have a look at section 6.1 Filesystem.

Troubleshooting Check the output for errors, also the installation-logfile. You are
sure, that you installed the needed libraries properly, but

> make

produced errors like:

/bin/sh: gdk-pixbuf-config: command not found

Let’s again assume you used the RedHat package named “gdk-pixbuf-devel” (well,
Debian packages are treated similar). Then check via

> rpm -ql gdk-pixbuf-devel |grep gdk-pixbuf-config

or with full search

> find / -name gdk-pixbuf-config

where the needed packed-files got installed. Maybe they are simply not in default-
execute path!?

Assume you find “gdk-pixbuf-config” in “/opt/gnome/bin/gdk-pixbuf-config”.
With the bash-shell you can replace the compiling

6

> make

command by:

> PATH=$PATH:/opt/gnome/bin make

Or you change the Makefile entry “GDK PIXBUF = gdk-pixbuf-config” to
“GDK PIXBUF = /opt/gnome/bin/gdk-pixbuf-config”.

7

User guide

8

3 Introduction

3.1 Quick “on the fly” tour

In this Quicktour you will get a short overview over iceWing and experiment with
it’s GUI. For this you will start a session with a small video as input and then play
a bit with a demo plugin. With the sources of iceWing you got a small video, which
you can use during this tour. It can be found in the docs directory under the name
“quicktour.avi”. Alternatively, you can choose any other image or video (of a format,
that iceWing supports).

Compiling the plugin During installation of iceWing the demo plugin was not com-
piled and installed. So let’s do that now.

> cd {wherever your iceWing-sources are}
> cd plugins/demo

Now make sure that you have $(PREFIX)/bin in the default-execute path or, alter-
natively, change the Makefile in the current directory. The Makefile needs to find
“icewing-config”, which was installed in $(PREFIX)/bin. Then simply

> make depend

> make

> make install

This compiles the demo plugin and installs it under the name libdemo.so in the di-
rectory $(PREFIX)/lib/iceWing, where iceWing can find it automatically.

The quick tour You tell by command line parameters from where iceWing will take
it’s images. There are several kinds of sources:

• file-loading from disk (like you do for this session)

• grabbing from camera
(only available, if iceWing was compiled with AVlib support)

• DACS streams
(only available, if iceWing was compiled with DACS support)

9

So let’s jump in and start iceWing with the example plugin “demo”: You launch
iceWing in the shell-command line with (as one single line, after changing to the right
directory)

> cd {wherever your iceWing-sources are}
> icewing -sp docs/quicktour.avi -l demo

After this, iceWing opens it’s main window. At the same time on the starting console
iceWing and the plugin write constantly their status.

Figure 3.1: The main window of iceWing.

In figure 3.1 you see the iceWing main GUI, so lets explore some things. On the left
side you see the “Categories” area, which has now “Images” and “Other” and some
plugin pages.

The category “Other” Click on “Other” to activate this special page. You can see
several sliders on the right side. If you have during a session as data source not a
video stream but one single image, “Image Num” will always be set to 0. None the
less iceWing has still the option to (re)acquire that single image on a timely basis:
The slider “Wait Time” sets the delay (in ms), after that this (for video-streams:
next) image shall be acquired automatically. If set to -1, iceWing waits until you click
manually the read buttons below. So now set the wait time to 200ms, and you see
the mass of console output greatly reduced.

10

The plugin pages You also launched with the command line parameter “-l” the
plugin “demo”, which is inside libdemo.so. Every plugin can generate none or more
page-entries on the left “Category” side. By selecting the pages you can view plugin
status or change the plugin parameters on the right side. Page “Demo1” has some
options, that directly affect the plugin. “Demo1 WidgetTest” and “Demo1 Wid-
getTest2” not do anything useful. But they show you all the available GUI-elements
of iceWing, that can also be easily used by your own plugins.

(a) (b)

Figure 3.2: (a) The page “Images”. (b) The context menu of window “Demo1 image”
with all it’s submenus.

How to display plugin results? With click on category “Images” you see on the
page on the right side several “Window” entries coming up (see figure 3.2(a)). They
show you all windows that the plugins wish to display. Double-click (de)activates the
window of that entry and you can see what the plugins are doing.

You see one window “Input data” for the current input image, one separate window
for each YUV channel of the source image and two windows for the output of the
plugin “Demo1”.

Lets now activate the first demo window called “Demo1.image”. Inside this new
window press the right mouse button and verify that “Remember Data” is active (see
figure 3.2(b)). This flag makes all coming zoom commands operate on the currently
loaded image data, not only on new acquired/grabbed images. If you deselect this
option, and e.g. try to zoom around, the zoom commands will still be remembered
- but the window content will still display (unchanged until next image reading) the
last acquired image without any of the zoom commands visible. When you set “Wait
Time” = -1, you see the “Remember Data” flag’s functionality very clear: When

11

“Remember Data” is inactive, only reloading the image source will refresh the window
content and show your until then done zooms.

Zooming the window content Inside the window shift/crtl/alt-keys plus middle
mouse button zoom in/out/reset the image. When you just hold the middle button
and move the mouse around, you can pan inside the image, if you have zoomed into
it. Additionally, you can use the scroll whell and the shift and ctrl-keys to pan and
zoom in the window, or, as a third option, the “View” context menu. If you have
problems with the zooming, look at the section 5.2.6 “Panning/Zooming the image
windows”.

Now play a bit with the “Remember Data” flag and “Wait Time” and zooming to
work it out.

Manipulating image colors In the context menu (right mouse button) you can
see the “Preview->Random” option. This tool randomizes the color assignments.
This can be useful to verify the output of a color separating plugin, because very
similar/neighbored colors now get very distinguishable.

Saving the zoomed part into a separate file After you played around a bit, you
can safe the frame content into a file with context menu entry “File/Save”. The
picture will be the window content and it’s name be “Gsnap 0.ppm”. If you wish a
different name/format, you can change this (and more) by clicking the wrench icon
of the main Window (see figure 3.1) to get the preferences window. There you can
change the image name to e.g. “quicktour zoomed %d.ppm” (the %d is a placeholder
for the image number).

More about this plugin via “plugin info” On the page “Other” in the main win-
dow (figure 3.1) click “Plugin Info”. Here you see how the plugin “Demo1” is inte-
grated into the iceWing system, You see the sheet and the only two active plugins are
“Demo1” and “grab”. The plugin “grab” is needed to acquire the image from hard
disk (command line parameter “-sp”). All other plugins (“record” etc.) are inbuilt
ones, but they are not registered into the current session of iceWing and thus are not
active.

More of this all later in the section 5.2.4 Plugin Info...

3.2 The special plugin “grab”

The plugin “grab” is a very basic and thus inbuilt plugin, that allows to acquire
images or video streams from grabber hardware, disk or via DACS from external
processes. This plugin will be used by nearly all other image processing plugins. But

12

iceWing not needs this plugin! But then you need your own plugin as “data-provider”
for e.g. audio streams or likewise.

Some comments on up-/downsampling iceWing provides the images via the plugin
“grab” (or other data-provider plugins). And the plugin “grab” provides two sepa-
rate queues of image histories: downsampled and upsampled (i.e. full/original sized)
images. With a downsample factor of 1 the two queues have the same images, while
a factor of 3 makes the downsampled images consist of every 3rd pixel of the original
sized image. Both queues have a history size - how many images will be stored for
plugin access to older images. Excellent - but what for?

Well, this feature is useful when both reduced and detailed image size versions are
needed for the global task. E.g. a continously operating plugin “trajectory tracking”
uses the faster downsampled images to swiftly keep track of the hand-position. Mean-
while, but much less frequently, another very time-intensive plugin “object detection”
separates an object in that hand. For this job, it may register for the more detailed
queue of upsampled images.

13

4 The command line interface

4.1 The command line parameters in detail

> icewing -h

gives you the list of command line parameters. Now they will be explained more
detailed, arranged to subject.

General options

@<file> This allows to store arguments in files. Option “@” replaces it’s argument
<file> with the content of <file>. Any lines in <file> starting with ’#’ are
ignored, the remaining lines are treated as further options.

-h | –help Besides showing all options and there meaning iceWing writes the names
of all plugin instances, that are created by parameter “-l” or “-lg” and then
terminates. You need the precise names of the plugin instances if you wish to
send options to specific plugin instances with option “-a”.

–version Shows version information and exits the program.

-n <name> When you use DACS, the launched instances of iceWing must be some-
how addressable. This option specifies the process name of this instance of
iceWing - the default name is “icewing”. If there are several instances of iceWing
(network wide), you must care: Give at least those iceWing processes unambigu-
ous names, that are used with DACS.

-p <width>x<height> Sets the size of preview windows, default: 378x278.

-rc <config-file—config-setting> If the argument to this option contains a ’=’, the
argument is interpreted as a gui setting and the referenced gui element is mod-
ified accordingly. Otherwise, the given config file <config-file> is loaded addi-
tionally to the standard file “$(HOME)/.icewing/values” (which is read first).
This option can be given multiple times.

-ses <session-file> Load the session file session-file instead of the standard file
“$(HOME)/.icewing/session” and use this file for any session related operations.

14

-time <cnt—plugins—all>... “cnt” specifies after how many main loop iterations
time measurements are given out. If “cnt”<=0 all time measurements are dis-
abled. The default is 50. The other arguments allow to automatically create
timers for measuring the execution time of the process() call for single plugin
instances. If “all” is given, all plugin instances are measured. For example

> icewing -time ‘‘5 backpro imgclass’’

outputs time measurements all 5 main loop runs and creates timers for the plugin
instances backpro and imgclass. This option can be given multiple times.

-iconic Start the main iceWing window iconified.

-t <talklevel> iceWing outputs debug messages only if their level is below <talk-
level>, default: 5, used range of levels: 0..4.

Input options

Remember : All this options, that are related to image input (-sg, -sp, -sp1, -sd, -c,
-f, -r, -stereo, -bayer -crop, -rot, and -oi) are passed to the special plugin “grab”. If
you use another plugin as data-source, that plugin will have it’s own input options
(passed via “-a”). Neither “grab” knows of the other plugins options, nor does the
other plugin see this input options.

So this options could also be thought as “input options for plugin grab”. You can
use multiple instances of the plugin grab and thus multiple images at the same time.
If you want to do that, you have to pass these options via the iceWing option “-a”
to the additional grab instances. Thus every instance of grab can get it’s very own
options. The multiple instances are created by loading the plugin via the option “-l”
multiple times.

-sg <inputDrv> <drvOptions> Source of Grabber: If you use a grabber camera for
your images, you must include the AVlib in installation. The AVlib supports
several camera systems, and here you select which you use. iceWing simply
passes the given parameters on.

<inputDrv> can be one of PAL COMPOSITE, PAL S VIDEO, V4L2,
FIREWIRE, or UNICAP (or abbreviated “C”, “S”, “V”, “F”, and “U”). See
section 4.2 for more details about the different drivers.

<drvOptions> is an option string, which specifies in more detail how the driver
you selected with <inputDrv> should behave. The different options of the
drivers are described in section 4.2.

The different drivers provide help for it’s driver options: If you are not sure,
which options your selected driver, e.g. “F”, the firewire driver, has, try

> icewing -sg F help

15

and an overview of the options will be printed to the console.

If you only give -sg without anything special, the default setting is
PAL S VIDEO with no special options.

-sp <fileset> Source of Pictures: What you specify as <fileset> will be the picture(s)
data-source for the plugin “grab”. Reaching the last picture iceWing loops,
beginning again with the first picture.

iceWing natively supports the pnm image format. Depending on your version
(or if installed at all) of the gdk-pixbuf library, the range of supported image
formats is greatly enhanced. Version 0.16 provides e.g. this formats: bmp, gif,
ico, jpeg, png, ras, tiff, and xbm. pnm images are read in bit depths from 8 to
32 and in special variants float and double images can be read, too. png images
are read in 8 bit and 16 bit depths. All other formats are 8 bit only.

<fileset> specifies the list of file names. It has the following format:
fileset = fileset | ’y’ | ’r’ | ’e’ | ’E’ | ’f’ | ’F’ | ’file’

Single Pictures You can simply give single pictures as files

> icewing -sp image.ppm image2.gif

’y’, ’r’ → YUV or RGB The pictures can be stored as color model YUV
(which is the default) or RGB. With a ’y’ or ’r’ in front of the name you
can specify the color model of the coming files. So this example names
one YUV, two RGB and another YUV picture as data source sequence:

> icewing -sp imageYUV1.ppm r imageRGB1.ppm imageRGB2.ppm

y imageYUV2.ppm

’file’ with %d or any int based printf() conversion specifier As further op-
tion you can name a whole series of pictures: with e.g. %d the plugin
“grab” replaces %d by integer numbers beginning from 0 and tries to open
the file. As another example “%04d” matches all numbers, starting with
4 leading zeros. As soon as iceWing cannot match the current number, it
moves on to the next fileset. E.g.

> icewing -sp image%03d.ppm picture%d.ppm

makes the plugin “grab” increasingly scan for (and if found: load) files
named with “image000.ppm”, “image001.ppm”... If no further file is found,
it scans for pictures named “picture0.ppm”, “picture1.ppm”...

’file’ with at least %t or %T, or a combination of %t, %T, and %d An
alternative method to specify a series of pictures, one example would be

16

’/tmp/image%T %t.png’. If %t or %T is inside the file name part of
one ’file’ to the -sp option, iceWing scans the complete directory, in the
example ’/tmp’, for files matching the file name part with any numbers
replacing %d, %T, and %t. It loads the found files sorted by the numbers
replacing %d, %T, and %t in that direction. I.e. the coarsest order is
given by %d and the finest by %t.

In this case no printf() style format specifiers are allowed, as files with any
number format are used at the same time.

’e’, ’E’ → Open files/Check file extension iceWing must know the number of
images you specified on the command line. To verify if a file is a movie
file and then get its frame count, iceWing opens every file during startup.
With an ’E’ in front of the file names iceWing opens only these files which
have a known movie extension (e.g. ’.avi’ or ’.ogm’). This speeds up the
program start. With an ’e’ in front of the file names you switch back to
opening all files. The default is to open all files.

’f’, ’F’ → Duplicate/No duplicate frames in movies Movie files store the
number of frames to display in one second (FPS value) and the to be
displayed frames. Normally, if less or more frames are stored in the movie
at one point in time than the number of frames, which had to be available
according to the FPS value, single frames get duplicated or removed. If ’F’
is specified, this duplication and removal does not happen. In this case, the
“Image Num” slider in the user interface on the “Other” page (see page
32) can only be used for seeking if the read continuous buttons (’¡¡’ and
’¿¿’) are not pressed. The default is to comply with the FPS value.

-sp1 <fileset> This is just the same as -sp. But after the last picture is reached
and every registered plugin has finished it’s work on that picture, the iceWing
process ends instead of looping back to the first picture.

-sd <stream> [synclev] Use a DACS stream as input of images (for plugin “grab”).

An external process creates that stream of images somewhere in the network.
It has published it via DACS, and this iceWing process can order that stream as
input of images.

The stream can have some synchronize-tokens of several hierarchical levels in-
tegrated. This SYNC-tokens of increasing level create substructures of the in-
coming data (e.g. letters, words, sentences...). You can register the stream at
a given synclevel. Level 0 means every single image will be delivered to this
iceWing instance. Higher levels lead to fewer images, depending strongly on
the SYNC-level philosophy of the stream creating process. You need to get
this information about the stream creating process to choose the appropriate
SYNC-level, with that you register the DACS stream. If the stream delivering

17

process separates the images with SYNC-level 2 and you order this stream at
this level, you will get always the latest image. Any older images get dropped off
the stream, as soon as the new image arrives the stream. So with this strategy
iceWing gets always up to date images - simply by ordering at the appropriate
level.

Caution: SYNC-level of 0 is special and means, that this instance of iceWing
gets every single image, that is put into the stream (no loss of any image). You
may need this, e.g. because plugins sometimes need access to older, but still
unreceived images. But the DACS process must store all of the undelivered
images. If iceWing consumes the images at a slower rate than the images are
put into the stream (in average), this will definitely lead sooner or later to a
huge size of the DACS process – and finally (when the storage limit is exceeded)
the process gets killed by the system.

If you wish write your own image-creation process to send images to iceWing via
DACS: There is already the SFB-360 internal data type “struct Bild t” (which
is declared in the file “sfb.h”). It encodes the image, and you must use it as
the type to be passed to DACS. Then iceWing can receive images from your own
process.

For further details about DACS see the dissertation of Nils Jungclaus [Jun98].

-stereo Expect gray images containing interlaced stereo images as input and decom-
pose them by putting them one after the other. This option is similar to the
“stereo=deinter” option of the firewire driver (see section 4.2 for more details).

-bayer [mode] [pattern] Expect a gray image with an embedded bayer pattern as
the input image. Use the specified method and the specified bayer pattern to
decompose it. If no method or pattern is specified, downsampling and RGGB
are used. The supported methods are:

down Downsampling of the input image by a factor of 2.

neighbor Nearest neighbor interpolation.

bilinear Bilinear interpolation.

hue Smooth hue transition interpolation.

edge Edge sensing interpolation.

Supported bayer patterns are: RGGB | BGGR | GRBG | GBRG.

This option is similar to the “bayer” and “pattern” options of the firewire driver
(see section 4.2 for more details).

-crop x y width height Crop a rectangle starting at position (x,y) of size width x
height from the input image. If width or height are smaller than zero or zero,

18

the values are measured from the right or bottom side. E.g. “-crop 5 10 -5 -10”
would crop a border of 5 pixel from the left and right sides and a border of 10
pixels from the top and bottom sides of the input image.

-rot {0 | 90 | 180 | 270} Rotate the input image by 0◦, 90◦, 180◦, or 270◦. The
default is 0◦.

Options for up-/downsampling behavior

-c <cnt> iceWing internally manages a queue of downsampled images. With this
option you can specify the length of this queue.

Default value is 2.

-f [cnt] If you do not specify this option, iceWing has only the downsampled queue
of images. With “-f” iceWing activates the Full sized (i.e. the upsampled) queue
of images.

The optional [cnt] sets the queue size, the default is 1.

-r <factor> Remember downsample factor of input images.

If you use already downsampled images as input, unfortunately iceWing does
not know this without further notifying. <factor> tells the interested plugins,
what factor the source images got downsampled.

Remember: With downsampled image sources, plugin grab will additionally
downsample the input into the downsample queue. So when the input images
already have downsample factor of 2, and the current iceWing instance has
downsample factor of 3, the images in the downsample queue will have a true
downsample factor of 6 (compared to the original image), while the images inside
the upsampled queue have downsample factor of 2. The only way to solve this
and e.g. simulate the original size of the image is to use this option “-r”: You
tell iceWing, what downsample factor the input images already have. And the
plugins can (but not need to) make use of this additional information.

And also remember: Even the commando “Save Original” saves the original
(=unrendered) image, but including the given downsample factor (set in fig-
ure 3.1 page “other” or in paragraph Downsampling 5.2.3).

Output/remote control options

The “-o” options have several different purposes regarding the communication to
other programs and with the sub options you specify, what to output and what inter-
faces to enable.

19

-of With option “-of”, this instance of iceWing can be fully remote controlled via
DACS including nearly every single GUI-widget element.

This uses the capability of iceWing to save and load all it’s current status
into the config file (while session file stores the window properties). Re-
mote control via DACS works quite similar: With this option “-of” iceWing
publishes DACS wide the functions void <icewing> control(char[]) and char[]
<icewing> getSettings(void). <icewing> is the name of this instance of iceWing
(that you specified with option -n). The “char[]” means, that you send a nor-
mal c-string as parameter to the control() function. The content of that string
can be any lines of the iceWing configuration file and iceWing accepts the new
settings. Similar, the getSettings() function returns a string with the current
settings of all widgets in the format of the configuration file.

Additionally this option publishes to DACS the function struct Bild t
<icewing> getImg(imgspec). With this function, external processes can receive
an image from this instance of iceWing via DACS. The images are send encoded
in the SFB-360 “struct Bild t” data type. There are further options, to allow
the external process to select precisely which image it receives, and in which
downsample format.

The format of “imgspec”:

[’PLUG’ <plugnum>] (’NUM’ <imgnum>|’TIME’ <sec> <usec>|

’FTIME’ <sec> <usec>) down

PLUG If multiple instances of the plugin grab are running, multiple images are
available at the same time. With PLUG you can select the image from the
instance <plugnum>. The default is 1, i.e. the image from the first grab
instance.

NUM Every single image in iceWing has a continuous number, starting with 0.
iceWing returns the image with the number <imgnum>. If <imgnum><0,
return a full size image, see option “-f”. If <imgnum>==0, return the
current full size image.

So the sign determines, from which queue iceWing takes the image from:
the upsampled or the downsampled queue (See also options “-c” and “-f”).

If the upsampled queue is not existing, you will always get the downsampled
version of the image.

TIME iceWing returns that image with a grabbing time most similar to (<sec>
<usec>). The image is taken from the downsampled queue.

If TIME is in the future, the nearest image is taken - and that will always
be the most recent image.

20

FTIME iceWing returns a full size image with a grabbing time most similar to
(<sec> <usec>).

Again, if the upsampled queue is not existing, you will always get the
downsampled version of the image.

<down> iceWing will downsample the returned image by factor <down>. This
factor is applied additionally to the iceWing downsample factor (adjustable
in page “Other”, see figure 3.1)!

As example: iceWing has set a downsample factor of 2 and this option
<down> is e.g. set to 3. Now the image will be delivered to DACS with a
true downsample factor of 6 (well, with FTIME it is 3).

-oi [interval] Output images on DACS stream <icewing> images and provide a func-
tion void <icewing> setCrop(“x1 y1 x2 y2”) to crop the streamed images.
<icewing> stands for the DACS name of this iceWing process (see option “-
n”). With the optional [interval] iceWing will send only every nth image to
the stream. If the upsampled queue exists, you will get an upsampled image,
otherwise a downsampled image. The images are sent in the “struct Bild t”
format.

With the function <icewing> setCrop(“x1 y1 x2 y2”) a freely defined rectangle
of the image can be dumped to the stream. The parameter string defines the
rectangle. The four coordinates refer to the full size, i.e. not downsampled
image. iceWing adapts them internally to the real image size.

-os Output some (currently very few) status informations on DACS stream
<icewing> status.

The function “iw output status (const char *msg)” declared in output.h sends
on this stream.

Plugin options

-l <plugin libraries> Each plugin lives inside a library. This option loads the given
plugin libraries into iceWing. The library names must be separated by ’ ’, ’,’, or
’;’. Additionally, this option can be given multiple times. If you wish to have
several instances of a plugin, repeat the name of the relevant library. But be
cautious: not all plugins can operate as several instances (e.g. plugin “min”)!

Search order: First the library is searched as specified with this option. If the
library was not found, iceWing searches again in $(PREFIX)/lib/iceWing/ for
the library. If still not found, the name is expanded by “lib[...].so” and again
searched in $(PREFIX)/lib/iceWing/.

21

-lg Not for Alpha machines! Similar to “-l”, but with a very impacting difference:
while dlopen()’ing the libraries, the flag RTLD GLOBAL is set (makes all not-
static objects of the library global for the whole iceWing process)! So this is
more a linker option, than an iceWing feature!

Use only, when you really know what you are doing (e.g. great danger of name-
clashes...)!

-a <plugin instance> <option> Send command line arguments to a plugin in-
stance. This option can be given multiple times.

Every plugin should provide help on it’s options. To find those help messages,
use parameter ‘-a pluginName “-h” ’.

-d <plugins> Disables the given plugin instances. This option can be given multiple
times.

Normally all loaded plugins get activated. You can toggle plugin activation
also via GUI, but sometimes you may wish to start an iceWing session with an
initially disabled plugin instance.

E.g. ‘-d “backpro imgclass” ’

4.2 Parameters of the grabber driver

If you want to use a grabber camera as a source for your images, you have to
pass the option “-sg” with one of the drivers PAL COMPOSITE, PAL S VIDEO,
V4L2, FIREWIRE, or UNICAP (or abbreviated “C”, “S”, “V”, “F”, and “U”) to the
grabbing plugin. You can additionally pass different options to the different grabber
drivers. If you pass “help” as an option, you get an overview of all available options,
e.g. for the firewire driver:

> icewing -sg F help

The help message will be printed to the console. The different options are separated
by “:”. Parameters of an option are separated by a “=” from the option name, e.g.
“camera=2:bayer=hue” would be an allowed option string. In detail the different
options are:

4.2.1 Drivers on OSF Alpha systems

MME driver for Composite or S Video devices

help Shows the help page of the driver.

22

camera=val Up to two cameras can be connected to the computer. Here you can
select with a number of 0 or 1 which of these cameras should be used. The
default is 0, the first one.

fps=val You can grab the images with different speeds. This option sets the frame
rate the camera should operate in. The default is 25.

4.2.2 Drivers on Linux systems

V4L2 driver for Composite, S Video, and other devices

help Shows the help page of the driver.

debug If given, different debugging information about the camera, it’s capabilities,
and the current driver status is printed to the console.

device=name Specifies the device, the driver will use to grab images from. If this
option is not specified, “/dev/video” or, if this is not available, “/dev/video0”
is used.

input=num The video input to use. If the driver was called as “C” or
PAL COMPOSITE, the first composite video input is the default for this op-
tion. If called as “S” or PAL S VIDEO, the first S-Video video input is the
default. And finally, if the driver is called as “V” or V4L2, 0 is the default.

format=num Most devices support different image formats, e.g. YUV or RGB for-
mats in various pixel depths. Here you can select which one to use. If this
option is not specified, the driver uses a YUV format with a depth as big as
possible.

propX=val V4L2 devices have several properties, e.g. brightness, hue, contrast, and
other. With this option you can set them. E.g. "prop0=0.64" will set the first
property to 0.64. Information about the available properties and their allowed
values is shown if the option “debug” is given.

buffer=cnt V4L2 can use several intermediate image buffers to compensate for an
intermediate slowness of the program before grabbing the next frame. This
option sets the number of buffers, the default is 4.

Firewire driver for DV-cameras connected via firewire

help Shows the help page of the driver.

debug If given, different debugging information about the camera, it’s capabilities,
and the current driver status is printed to the console.

23

device=name Specifies the device, the driver will use to grab images from. If
this option is not specified, “/dev/video1394” or “/dev/video1394/0” is used,
whichever is available.

camera=val Multiple cameras can be connected to the computer via one device. Here
you can select with a number starting with 1 which of these cameras should be
used. The default is 1, the first one.

fps=val DV-cameras normally support different speeds in which they can deliver the
images. This option sets the frame rate the camera should operate in. Supported
frame rates are: 1.875, 3.75, 7.5, 15, 30, and 60. The default is 15.

mode=yuvXXX|rgbXXX|monoXXX|16monoXXX DV-cameras can support differ-
ent color spaces and different image sizes for the images. With this option you
can select which mode the camera should operate in if an image without any
downsampling should be grabbed. If the desired mode is not supported by the
camera, the driver falls back to a supported mode. The “XXX” specifies the
desired width, e.g. “mono1024” would be a possible mode specifier. The default
is yuv640x480.

bayer=down|neighbor|bilinear|hue|edge Some cameras support color image grab-
bing, but deliver the image not decomposed but as one gray image plane with
an embedded bayer pattern. In a bayer pattern a square of size 2 by 2 pixels
holds information about all three RGB channels. To decompose this informa-
tion, different interpolation methods exist. If this option is given, a gray image of
depth 8 or 16 bit with an embedded bayer pattern is expected and decomposed
with the specified method. The supported interpolation methods:

down The 2x2 bayer square is used to only get one color pixel, the destination
image gets downsampled by a factor of 2.

neighbor Nearest neighbor interpolation, where each interpolated output pixel
gets the value of the nearest pixel in the input image, is used.

bilinear Bilinear interpolation, where each interpolated output pixel gets the
average value of the two or four nearest pixels in the input image, is used.

hue Smooth hue transition interpolation. Here the green channel is gained by
bilinear interpolation. For the blue and the red channel a “hue value” gets
defined as B/G or R/G. The neighboring hue values are then used to
estimate a color pixel. E.g. if a blue pixel is located on the left and on the
right side of a pixel, the blue pixel in the middle gets estimated by:

BM = GM

2
∗

(
BL

GL
+ BR

GR

)
edge Edge sensing interpolation. The blue and red channels are computed

identical to the “smooth hue transition interpolation” method. For the

24

green channel horizontal and vertical gradient magnitudes are calculated.
A green pixel gets interpolated by the horizontal neighbors, if the horizontal
gradient is smaller than the vertical one. Otherwise the vertical pixels are
used.

pattern=RGGB|BGGR|GRBG|GBRG The information in a 2 by 2 bayer square can
be ordered in different ways. This option specifies how it is ordered. The default
is RGGB, red in the first pixel, green in the second pixel and the first pixel on
the second row, and blue in the second column on the second row.

stereo=raw|deinter If given, an image of type YUV422 is expected. However, this
image is not interpreted as a normal color image, but as two interlaced gray
scale images. If stereo=raw is given, the image gets interpreted as a gray image
without decoding the interlacing. If stereo=deinter is given, the image gets
decoded and saved one after the other. For example the Videre stereo camera
saves its two images in this way.

Unicap driver for various devices

This driver uses the unicap library to access various devices. Unicap provides
a uniform API for different kinds of video capture devices, e.g. IEEE1394, Video
for Linux, and some other. See “http://www.datafloater.de/unicap/” for details
about this library.

help Shows the help page of the driver.

debug If given, different debugging information about the devices, it’s capabilities,
and the current driver status is printed to the console.

device=val Unicap supports multiple devices. Here you can select which one to use.
The default is 0, the first one.

format=val Most devices support different image formats. Here you can select which
one to use. The default is 0, the first one.

propX=val The different devices have several properties, e.g. brightness, hue, video
source, and other. With this option you can set them. E.g. "prop0=11738" will
set the first property to 11738. Information about the available properties and
their allowed values is shown if the option “debug” is given.

4.3 Configuration files

iceWing uses two configuration files, which get loaded and stored during runtime:

25

http://www.datafloater.de/unicap/

.icewing/session stores the window properties of the current session. Default wise
it’s “$(HOME)/.icewing/session”, but you can use alternative files via command line
option “-ses”. In the preferences window or with the context menu you can save your
current session into an alternative file.

The content is simple - for each active window there is an entry like

“Name of the window”= “x” win-x “y” win-y “w” width “h” height
“zoom” zoom “dx” pan-x “dy” pan-y

where win-x and win-y specify the window position, zoom specifies the zoom factor
of the window (0 means fit-to-window) and pan-x and pan-y specifies the panning
position for the content of the window. The zoom and panning values are only stored
if “Save pan/zoom values” in the preferences window is active, see section 5.2.2. Lines
starting with “#” are treated as comments and get ignored.

.icewing/values stores all settings of every single GUI value of the plugins and the
iceWing system. Additionally, the hotkeys for the context menu of the image windows
get stored in these files. Default wise it’s “$(HOME)/.icewing/values”, but you can
use additional files via command line option “-rc” or in the main window with the
Load/Save buttons.

If you wish to remote control the iceWing process via DACS, you must know the
structure of the content of this config file. The best will be to save the current settings
and have a look at the file.

Every line holds for one iceWing widget it’s setting. Each widget is unambiguously
addressed (it’s path) via it’s window name or it’s category name and it’s widget name.
It’s entries look like this: “windowname.widgetname” = value

Each widget type has it’s own kind of values (e.g. for booleans: true=1, false=0),
the most complex widget surely is “list”. More details about the different widgets can
be found in the Programming Guide in section 7.3.1.

26

5 The Graphical User Interface

5.1 The iceWing render chain

Why should you know this details? Well, you will need to understand the basics of
the underlying render mechanism to fully understand how the GUI works and what
the many GUI-commands are used for! In iceWing rendering data to image windows is
done in several steps. Figure 5.1 shows an overview of the complete rendering process.
By using the different GUI commands you can manipulate and inspect the data at
different positions of the render chain.

Preview HistEQ, ...

Save

Save Original

Remember Data
prev_render_...(...)

Draw Font Shadows?, ...

− Middle mouse button + Shift/Alt/Ctrl
− "View" context menu

Figure 5.1: The render chain of iceWing.

If a plugin wants to display any data, it calls one of the different prev render xxx()

functions (see section 7.3.2 for an in deep description of these functions). An example
is the plugin “grab”, which displays the loaded or grabbed image in the window “Input
data”.

The first thing these render functions do is to check the “Remember Data” flag,
which is associated to every image window. If the flag is set, the complete data which

27

is passed to the render functions is copied for later use. This allows to re-render the
complete image without the help of the plugin. If any of the remaining parameter of
the render chain are changed, e.g. the displayed part of the data or the zoom level,
the data can be immediately redisplayed. This means, that you can instantly see the
effect on your current image. Otherwise, if the flag “Remember Data” is not set, the
effect of the changed parameter gets only visible after the next call of the plugin to
the prev render xxx() functions. For the “grab” plugin for example this means that
you see the effect not until the next image is loaded or grabbed.

If an image should be displayed, the data of the complete image can now be saved
with the help of the “Save Original” GUI function. Attention: This saves only the
first image, not any text, which may be rendered on the image, nor any lines, circles
or anything else besides the first image.

The next step in the render chain is the rendering of the data into an internal
buffer. During this the data can be modified. E.g. you can add a drop shadow to all
displayed text via the context menu of the image windows. Moreover the displayed
region and the size/zoom factor can be changed interactively with the mouse. Thus the
coordinate system for the data as specified by the plugin (the “world coordinates”)
and the coordinate system for the rendered image as displayed on the screen (the
“screen coordinates”) are not identical.

The last step in the render chain is the display of the buffer on the screen. During
this some color changes, e.g. a histogram equalization, can be applied to the buffer.
Besides displaying the result on screen the result can be saved to a file with the help
of the “Save” GUI function.

5.2 The GUI commands

5.2.1 iceWing main window

The main window is divided into two main parts: In the upper area you see “Cat-
egories” and to it’s right the page content of the selected category. Most plugins
will create at least one entry (called “page”) into the categories-list. It allows you to
check/change that plugins parameters. Please see the respective plugin’s documen-
tation for any plugin specific information. In this documentation only the somewhat
special categories “Images” and “Other” will be described in more detail (see sec-
tions 5.2.5 and 5.2.3).

Besides these categories you see some global buttons in the iceWing main window:

Detach/attach symbol (D/A) Clicking this symbol at the top right corner will
detach this page into a separate window. Clicking again will put it back into the
iceWing main window.

28

You will use this feature, if you repeatedly wish to flip quickly from one page to
another. Or you change the slider on plugin page 1 and want to see the effects on
plugin page 2. If you e.g. work on a plugin sheet and wish to single step (wait-delay=-
1) through the next images and watch the plugins doing, you surely wish to detach
the “other” page.

Preferences button The wrench icon opens the preference window, where you can
configure different settings for the iceWing main program. See section 5.2.2 for a
complete description.

Load/Save buttons Loads/saves all made settings from all widgets inside iceWing
from/into the file “$(HOME)/.icewing/values”, if you selected the “Def” (meaning
“default”) variant of the buttons. The Load/Save buttons allow to select the file
name. But be aware: this is different to the command “load/save session”, which
stores the window size and position of all open windows, not the widget settings.

5.2.2 Preferences button

The wrench icon opens the preference window, where you can configure different
settings for the iceWing main program. “Image Saving” specifies settings for the save
functions in the context menu of image windows. In detail these are

Image format Specifies the file format used for saving images. If “By Extension” is
selected, the format gets selected based on the extension of the file name.

Saving in a vector format, i.e. the “SVG” format, requires that “Remember
Data” in the context of the image who’s data should be saved is activated. In
this case the complete image must be rerendered, which needs the saved data.
See section 5.1 for more details about “Remember Data”. Additionally, some
features of the iceWing render functions are not supported by SVG. So the
exported images may not be completely identical to the displayed ones.

Image name The file name, under which the images will be saved. You can embed
different information in the name by using the following modifiers:

%d: The consecutive image saving counter, starting at 0.
%t: The milliseconds part of the time the image gets saved.
%T: The seconds part of the time the image gets saved.
%b: Name of the current user.
%h: The system’s host name.
%w: The name of the window, from which the image gets saved.

29

Any of the above modifiers can be changed by printf() style format specifiers.
E.g. “image%03d.ppm” would result in “image000.ppm”, “image001.ppm” and
so on as file names.

AVI framerate If AVI files get saved, this value will be entered in the file for the
frame rate. That is this value will not really change the saved data, only this
one setting in the header of the saved AVI file is changed.

Quality The quality and thus the compression value used when saving jpeg images
or AVI files. 100 means a small compression and thus a good quality.

Show SaveMessage If activated a dialog is shown after every image saving which
confirms the successful saving.

Save full window If activated and “Save” or “Save Seq” is used as the saving com-
mand, an image of the size of the complete image window will be saved. If
deactivated a black border around the image will not be saved.

Reset FilenameCounter By using %d in the file name, a consecutive image saving
counter is embedded in the image file name. This button resets this value to
zero.

“Other” has settings for the session handling and the GUI. In detail these are

Save As / Save / Clear These buttons are similar to the menu entries in the context
menu of the image windows. “Save As” saves the current session in a file and
allows at the same time to change the current session file name, “Save” saves
the current session in the current session file, and “Clear” physically deletes
the current session file and thus clears this session. The default session file is
“$(HOME)/.icewing/session”.

A session file stores a list of windows and their configuration, their position,
their size, and optionally their zoom and panning values. On the next start of
iceWing a session file can be loaded, which then will restore the windows and
the window configuration.

Auto-save at exit If activated, at program exit the iceWing window configuration
will be saved in the current session file.

Save pan/zoom values If activated the current panning position and the current
zoom value will be saved additionally in session files. Otherwise only the position
and size of all open windows will be saved.

Use tree for If set to “Categories”, the categories list will use a tree widget, i.e.
categories like “Demo1 WidgetTest” will be shown in a tree like strukture. Oth-
erwise a list widget will be used. If this widget is set to “Images”, the window

30

list in the category “Images” will use a tree widget. If you change this setting,
you must save the current settings (by using the “Save” or “Save Def” buttons
in the main window) and restart iceWing.

Scrollbars in categorie pages If activated, the iceWing main window and any de-
tached pages can be resized to any height. If needed, a scrollbar is displayed in
the different pages. If deactivated, the windows height can not be made smaller
than what is needed for all widgets.

Auto add render widgets The rendering in image windows can be modified by using
commands in the context menu of the image windows. By default these com-
mands are only visible if the plugin which performs the rendering has added the
commands. If this button is activated, all commands which belong to the kind
of rendering used in an image window are added automatically by iceWing.

5.2.3 Commands in category “Other”

The category “Other” has widgets, which specify settings for the plugin “grab”,
and some widgets for the iceWing main program:

Interlace Different grabber camera systems have different methods of sending the
video-stream. Here you can select what of the grabbed data should be used. “Both”
selects the complete image, “Even” selects only the even field of an interlaced image.
“Even + Aspect” grabs only the even field and afterwards halves the image in the
horizontal direction to get square pixels again. “Down 2:1/Virtual 2:2” adjusts for
grabbed halve field images by halving the image in the horizontal direction and after-
wards telling other plugins that the image was downsampled in the vertical direction,
too (see also command line parameter “-r”).

Attention: Only some grabbing drivers and additionally only some kernel camera
drivers support the grabbing of half fields. So if you specified “-sg” for using a grabber
and you set this to something different than “Both” it might well be that the expected
does not happen. In this case half field grabbing is not supported with the used
configuration of the grabber driver, its configuration and the selected downsampling
factor.

Downsampling A ratio of 1 will grab and deliver the image 1:1. But if you e.g. set
it to 3, then only every 3rd pixel in both horizontal and vertical direction of the full
sized image will be delivered to other plugins - it will become scaled down by a factor
of 3. There can be two queues, where the images are stored – one for the original size
image and another queue for the downsampled images (see command line parameter
“-c” and “-f”).

31

File TimeStep Every image the plugin “grab” provides to other plugins is marked
with a time stamp. E.g. if you use the grabber, the time stamp marks the time the
image was grabbed. With this slider you can select the behavior if files from disk
should be loaded.

-1 sets the time stamp to the time the image was loaded. Values above 0 specify
an increase of the time stamp in ms. E.g. if set to 40 the first image gets a time
stamp of 0ms, the second of 40ms, than 80ms If this value is set to 0, the frame
rate of video files and the values scanned during processing %t and %T in file names
specified with option “-sp” are used. See page 16 for further information about %t
and %T.

Frame correct Wait Time If this button is not selected, iceWing waits exactly the
time slice specified with the next slider before the next image gets acquired. If this
button is selected, iceWing adapts this time slice. For example if the processing of the
last image took 50ms and the ‘Wait Time’ slider is set to 200ms, iceWing will only
wait 150ms.

Wait Time and positioning buttons Sets the delay (in milliseconds), until the next
image shall be acquired from disk/grabber. If you set it to -1, iceWing waits until
you manually change the image by pressing one of the positioning/acquiring buttons.
This -1 works like a “pause-mode”.

Image Num If you work with a video stream on disk, which you have specified
with the command line parameter “-sp”, this slider will appear. It shows the current
position inside the video stream and allows to seek to an other position.

Enable DACS Output If iceWing outputs any data via DACS, e.g. if you have
used the command line parameter “-oi”, toggling this button disables/enables this
outputting.

Plugin Info Opens the “Plugin Info” window, which shows different information
about all loaded plugins. This window is described in more detail in the section 5.2.4.

About Opens a window showing some information about iceWing, e.g. the version
number and the copyright.

5.2.4 The “Plugin Info” window

The “Plugin Info” window, which can be opened with a button in the category
“Other”, shows different information about plugins iceWing knows about and about

32

the communication between them. Figure 5.2.4 shows all the different pages of this
window.

Figure 5.2: All pages of the window “Plugin Info”, which shows information about
loaded plugins.

Inside a main loop iceWing calls the registered plugin instances repeatedly. The
order in which the instances get called is defined by the plugins. For this and for
the communication between plugins iceWing offers different functionality. Plugin in-
stances can interchange data, they can observe the provision of data, and they can call
functions of other plugin instances. Details about these communication possibilities
is displayed on the remaining pages. The displayed information is not continously
updated. By pressing “Refresh” the current internal state about the communication
information is displayed immediately. “RefreshEnd” defers the display shortly before
the end of the main loop, directly before any floating data with a reference count
of zero gets deleted (see below). So by pressing “RefreshEnd” you will get in a lot
of cases information about all data, which was provided during the last main loop
iteration.

Plugins On the first page “Plugins” a list of all plugins iceWing knows about and
all instances of these plugins is displayed. A double-click on one of the plugin
instances (de)activates the instance. If an instance is deactivated no functions
of this plugin instance are called. This is similar in effect to the command line
parameter “-d”. Additionally there is a context menu with two entries. The
first entry allows to (de)activate an instance of a plugin. With the second a new

33

instance of a plugin gets created. This is similar to specifying “-l pluginName”
on the command line.

Data The “Data” page shows information about all data the plugins have created. In
iceWing an identifier, a string, is always associated with all data. This identifier
allows the plugins to access the data. In the first column the identifier and the
instance name of the plugin, which has made the data available, is displayed.
All data inside iceWing is reference counted and gets automatically deleted if the
reference count drops to zero. If the data is marked as “floating” the deletion
is deferred until the end of one main loop iteration. Data is marked as “New”
as long one main loop iteration is not finished since the data was provided by a
plugin instance.

Observer The “Observer” page shows information about plugin instances, which ob-
serve the provision of data. If new data with an identifier, which is observed,
gets provided by any plugins the observer of this data are called with the new
data as an argument. Thus the order in which instances get called is defined
by the provision of data and by the observation of these data elements. There
is one special data element. The data “start” is not provided by a plugin, but
by iceWing at the start of every main loop. Plugin instances can observe this
data and thus get called at the start of the main loop. The “Observer” page
shows the different registered observer and information about currently known
data elements with a corresponding identifier. New data is available, if the data
was provided during the current main loop iteration. Additionally the amount
of available data elements with the observed identifier is displayed.

Functions The “Functions” page shows information about all functions, which plugin
instances have published. The function identifier and the plugin instance names,
which have provided the function, are displayed.

Logging The “Logging” page allows to get more detailed real time information about
the communication between the plugins. By activating the “Display” toggle
button calls to the different iceWing functions, which deal with the communi-
cation between plugins, are shown in the text widget above. For a description
of the different functions please see section 7.2. The “Clear” button clears the
text widget. Deactivating the toggle button stops the logging. Activating the
“File” toggle button records this information in the file, whose name is given
in the string widget next to the toggle button. The file is closed if the toggle
button is deactivated.

34

5.2.5 Category “Images” and image windows

The category “Images” shows a list of all image windows that the plugins wish to
display. Double-clicking an entry of the list opens or closes the window of that entry.

Every of these image windows iceWing or any plugin creates will have different
standard menu entries in a context menu. You can access this menu by clicking with
the right mouse button in an open image window. Depending on the things a plugin
renders in the image, there might be additional plugin specific entries.

Here is a list of entries you will find in all or, partly, a lot of image windows:

File/Save Saves the actual visible window content, including all active rendering
manipulations. In the preference window of iceWing you can specify different param-
eters for the saving process, e.g. the file name and the file format.

File/Save Original Saves the underlying original “world coordinate” image, without
any active rendering manipulations, in the original color space (for example YUV).
But if the downsample factor (page “other”) is >1, you will still save downsampled
images. This downsampling happens inside the plugin “grab” before the original
images are anyhow rendered in a image window or passed to further iceWing plugins.
Moreover this function does not save any texts, lines, regions, or anything else besides
images the plugin may display in the image. Only the first image is saved.

File/Save Seq Once activated, every new acquired image (the visible window con-
tent, including all active rendering manipulations) is saved continuously until deacti-
vated. Normally, if the active image format is for single images, a series of image files
gets stored. Otherwise, if the AVI file format is selected, a single video-stream file is
stored. You can change this format in the preferences window, see section 5.2.2 for
further details.

Caution! If you have selected the AVI format in the preference window, you must
remember: To prevent corrupt AVI files, you must end this “Save Seq” by (de)selecting
this command in the context menu again and continue with at least one new image
to close the saved AVI file. Alternatively while recording you can close the whole
image window or end iceWing with the “Quit” button, and iceWing sends the close
file command itself. Changing the Image format in the preference window will do the
same. If the file is not closed the AVI will miss some finalizing code and thus will be
corrupt.

File/Save OrigSeq Same as “Save Seq”, but the original “world coordinate” images
are used. For the data, which gets saved by this function the same as already stated
under “Save Original” applies.

35

File/Save Session Saves the current iceWing window configuration under the cur-
rently active session name. On the next start of iceWing every currently open window
will be remembered as it is. Without any special parameters the next time iceWing is
launched, the default configuration-file in “$(HOME)/.icewing/session” will be used
to restore any windows. Alternatively, the command line parameter “-ses <session-
file>” can be used to switch to non-default session files.

The Save/Clear Session menu entries are the same commands as the ones in the
preferences-window.

File/Clear Session This physically deletes the current session file and thus clears
the session. At the next launch the window layout of iceWing will look like the inbuilt
default.

View The View submenu contains different entries to zoom and pan inside the image
windows. So these entries are alternatives to the middle mouse button and the scroll
whell. See section 5.2.6 for more details. The menu is especially handy if the entries
are called via hotkeys. Besides using predefined hotkeys, the hotkeys of all menu
entries can be dynamically changed. If a menu entry has currently the focus of the
mouse a new hotkey can be set by simply pressing the desired hotkey. All hotkeys are
saved in the configuration file.

Info Window Opens a small window, which displays the coordinates and color (in
several color spaces) of the pixel at the mouse position if the mouse is inside any image
window. Additionally, if the mouse is over any rendered images, the “Original” tab
shows information about the data at the mouse as it was passed to the iceWing render
functions. For example iceWing can display images containing float values, which are
converted to 8 bit integer values during display. Possibly, these values are further
changed by any special rendering filters or any drawings, which are shown above the
image. These final 8 bit values are then displayed as the color values. In contrast, the
“Original” tab shows the float values from the inital image.

Additionally, this window contains two toggle button for two special functions. If
“Grab Values” is pressed, the info window waits on a press with the left mouse button
inside one of the image windows. The values at the time the button was pressed are
then additionally displayed in the info window. Thus two positions can be easily
compared. If “Measure” is pressed, distances and angles in the image windows can
be measured. If the left mouse button is pressed inside an image window and then
moved to a second position, the distance of these two positions and the angle between
a horizontal line and the marked line are displayed in the info window. Afterwards,
to change the initially selected line, the end points of the marked line can be dragged
around.

36

Remember Data (De-)activates the “Remember Data” mode, that was already
discussed in detail in section 5.1.

Settings Opens a window, where you can change some further image window related
options. As one point different options for the “Show Meta info” feature and the image
rendering can be specified. Moreover, all plugins can add any widgets to this window.
For a description of these options please refer to the special plugin documentation.
The other options are:

Histogram “Show Meta info” displays histograms of all rendered images.
Here you can change the kind of this histograms. “Use lines” changes
the visualization form of the histograms (filled or single lines). “In-
clude min/max” changes the method used for scaling the histogram
in the vertical axis. If activated, the biggest value of the histogram
is used to scale the histogram. If deactivated, the first and the last
histogram entries are not considered during determining the biggest
value of the histogram. Useful, if a small object is located on an
otherwise black or white image.

scaleMin/Max Images in iceWing can have any data type ranging from
unsigned chars to doubles. For displaying these images must be con-
verted to a range of 0 to 255. With these sliders you can influence
the conversion process. With “scaleMin = -2” the image values are
simply shifted in the range 0..255 without locking further at the im-
age values, e.g. for unsigned short images 65535 is displayed with a
value of 255. “scaleMin = -1” clamps the image values to a range of
0..255.

All other values for the sliders consider the minimal and maximal
values of the to be displayed image. The Min slider specifies the
amount, the minimal value is shifted towards the maximal value,
in percent of the difference of the minimal value and the maximal
value. The Max slider shifts the maximal value towards the minimal
value. All pixels darker then the shifted minimal value are displayed
as black, all pixels lighter then the maximum are displayed as white,
and everything in between is stretched linearly.

Entries of the submenu Preview

Normal Shows the image in the window with the original colors as they were specified
during rendering.

CStretch The color histogram of the image is stretched: The minimum (and maxi-
mum) of all used colors is set to 0 (255) and all colors are stretched linearly to
the full range 0 - 255 again.

37

CStretch5 5%, beginning with the nearest to black (white) pixels are set to black
(white). All other colors are stretched linearly.

CStretch10 Same as CStretch5, but with 10% of all pixels to black/white.

HistEQ Equalize the histogram of the image.

Equalization is used to repair images that have too much contrast or are too
light or dark. Equalization attempts to flatten the histogram of the image.

Random This randomly shuffles the color map.

So colors of the original image, that look very similar, change to very distinguish-
able colors. This is very useful to e.g. verify some color-separation processes.

Show MetaInfo This menu entry appears only if images are displayed in the window.
“Show MetaInfo” (de-)activates the display of some additional information of the
original image as passed to the render functions, for example the color-space of the
input image, the size of the image in pixels and the color histogram of the image.

Font This menu entry appears only if text may be displayed in the window. Selects
the font and thus the size of any text, which get rendered inside the image window
(for example the text shown if the meta info is activated).

Font Shadows This menu entry appears only if text may be displayed in the window.
Shows the rendered text with shadowed fonts. Helps sometimes to make the text more
visible.

5.2.6 Panning/Zooming the image windows

If a new image window is opened the rendered image is normally displayed in such
a zoom level that it is always completely visible. By pressing the shift key and the
middle mouse button inside the window you can zoom into the image, by pressing
the ctrl key and the middle mouse button you can zoom out. Alt plus the middle
mouse button resets to the initial fit to window displaying mode. If fit to window is
not active you can hold the middle mouse button and move around inside the window
to move the clipping frame for the “world coordinate” picture, i.e. to pan inside the
image.

Attention:
If your window manager is already using one or more of that combinations for itself,
then that signal can not reach iceWing! Then you have to change your window man-
ager setting: Disable that mouse signal there, so it will no longer get caught by your
window manager and can reach iceWing.

38

Besides using the middle mouse button for zooming and panning, there are two
additional posibilities to reach these functions: by using the mouse wheel or the
context menu. For panning the window vertical, again if fit to window is not active,
you can use the mouse wheel. Panning horizontally can be done with the mouse wheel
while pressing the shift key and zooming by using the mouse whell while the ctrl key
is pressed. Additionally, the image context menu contains a submenu “View” with
entries for all these functions.

5.3 The GUI widgets

(TODO: FULL list, or only short summary?) Widget “List” can have a context
menu. And it can be reordered via drag’n drop...

in Goptions.h opts xxx create()

39

Programming guide

40

6 iceWing Files

6.1 Filesystem hierarchy

Let’s see, what the installation consists of. Below the installation prefix, for example
“/usr/local”, you have this structure-content:

bin/ icewing - the executable itself

icewing-config

A shell script similar to e.g. gtk-config which makes compiling of own
plugins easy. It generates compiler-flags, extracts system-paths, and more.
“icewing-config --help” shows all available options of the script.

icewing-docgen

A shell script which collects help messages of all plugins, which are installed
under $(PREFIX)/lib/iceWing and which are integrated in iceWing. The
script calls all these plugins with the option “-h” and stores the output in
the files “Readme.txt” and “Readme.html” in the current directory.

icewing-plugingen

A plugin template generator. The script generates in the current di-
rectory a basic C or C++ plugin including a Makefile to compile it.
“icewing-plugingen --help” gives more information.

’icewing-config --exec-prefix’ gives this directory, whereas
’icewing-config --prefix’ gives the installation directory, i.e. this
directory without the “/bin” part.

include/ - All the headers for your own plugin programming

iceWing - headers from the iceWing system

Besides other options, ’icewing-config --cflags’ contains this direc-
tory.

iwPlugins - plugin headers

If your plugin publishes new structures to be used by other plugins, you
probably want to put them here.

’icewing-config --pincludedir’ gives this directory.

41

lib/ iceWing/ - Here is the default place for iceWing to search for plugin libraries.
Normally you give iceWing by command line parameter “-l” library names
to load. If iceWing is not able to load them directly, it automatically tries
to load them from this directory.

’icewing-config --libdir’ gives this directory.

man/ - The manpage of iceWing

share/ iceWing/ - Place where plugins can store additional data files. E.g. the
plugin “Face” has here it’s config-file placed, and the polynom-classificator
plugin stores it’s data here, too.

’icewing-config --datadir’ gives this directory.

log/icewing.log - The installation log file. It contains all actions performed
during the “make install” phase.

6.2 Headerfiles overview

TODO

42

7 iceWing – A CASE Tool

Originally taken from [Löm04, Anhang B]. Since then translated
by Ilker Savas and updated according to changes in iceWing.

During developing software in science there are certain extensive tasks to do, which
occur every time but do not belong to the real task directly. Very often one needs a way
to influence the parameters of an algorithm easily and quickly. Similarly important
is the possibility to easily visualize any data. It must be easy to examine and save
the data at any time. In greater integrated systems it is advantageous, if the different
components can be developed separately from each other without the loss of flexible
and fast interaction with each other afterwards.

In science an ergonomically sophisticated graphical user interface, which can also
be easily handled by a person not familiar with the program, is mostly not needed. In
most cases it is important that a small team which is familiar with the task can easily
develop and optimize its special algorithm. This team of specialists must be able to
handle the user interface in an easy way. Thereby it is mostly not intended to develop
a complete program for an end user. Several systems already offer functionality in
these directions. For example the commercial program Matlab offers comprehensive
options for visualization and also for generation of graphical user interfaces, which can
be used easily via the provided scripting language [The03]. The open script language
Tcl with its graphical tool Tk offers also great facilities to generate user interfaces
[Ous94].

But existing systems usually are not optimized for the specific needs during develop-
ing scientific software. iceWing, the Integrated Communication Environment Which Is
Not Gesten1 was developed to account for this lack. iceWing is a graphical shell, which
offers the above mentioned functionalities to dynamically loadable plugins in an easy
way. In the next sections iceWing will be introduced more closely. First an overview of
the structure of plugins is given. The following chapters then give more details of the
various fields of iceWing in an exemplary manner. So this is not a complete reference
manual which would describe all functions and types of iceWing. Further details not
mentioned here can be found in the header files and example plugins of iceWing.

43

Figure 7.1: A typical session with iceWing. Various intermediate results are being
displayed and could be examined. Various parameters can be influenced
interactively.

7.1 Overview

iceWing is a program written in the C language, which can dynamically load plugins
realized as shared libraries . It was tested on i386 Linux with the compilers GCC Ver-
sion 2.95 up to Version 4.02 and on Alpha’s with OSF 4.0f with the compilers DEC C
Version 5.9 and GCC Version 3.1. For graphical outputs as well as the user interface
generation the GTK toolkit3 Version 1.2 is used. With the help of other external
libraries the functionality can be extended, for example towards supported graphical
formats and supported cameras for grabbing images. Figure 7.1 demonstrates a typ-
ical session with iceWing in which hands in a sequence of images are segmented and
tracked.

Plugins in iceWing

1This is a reference to an older program, the predecessor of iceWing.
2see http://gcc.gnu.org/
3see http://www.gtk.org/

44

iceWing the program only provides an initial user interface and miscellaneous aux-
iliary routines. The real functionality is realized by the various plugins that may be
plugged into iceWing. Plugins for iceWing must implement the interface shown in Fig-
ure 7.2. This is illustrated in Figure 7.3 with the help of a minimal plugin. The source
code of this plugin as well as a Makefile to compile it can be found in the iceWing
source distribution in the directory “plugins/min/”. When the plugin, i.e. the shared
library, is first loaded, a function named plug get info() is invoked. This is also the
only predetermined entry point in the library. This function is used to create a new
instance of the plugin, so it acts as a factory function. It returns a pointer to a filled
structure of type plugDefinition.'

&

$

%

typedef struct plugDefinition {
char *name;
int abi_version;
void (*init) (struct plugDefinition *plug,

grabParameter *para, int argc, char **argv);
int (*init_options) (struct plugDefinition *plug);
void (*cleanup) (struct plugDefinition *plug);
BOOL (*process) (struct plugDefinition *plug,

char *id, struct plugData *data);
} plugDefinition;

Figure 7.2: The structure plugDefinition, which every plugin must implement.

The structure plugDefinition contains all the information iceWing needs for a new
plugin. The function pointers init(), init options(), cleanup(), and process()

define entry points for the instance of the plugin. init() is used for the general
initialization of an instance. For example it processes command line arguments for the
plugin instance. In init options() the graphical user interface is initialized. More
details about the user interface initialization can be found in section 7.3. cleanup() is
invoked at the end of the program to release any resources. Finally process() is called
if the real functionality of the plugin is to be executed. When this invocation happens
can be determined with the functions for the communication between plugins. For
more details see section 7.2. The variable name declares the name of the instance. As
the name serves as the identification of the instance it must be unique. abi version

should always be set to the constant PLUG ABI VERSION. During runtime it is used to
check if the plugin was compiled against the correct iceWing version.

As the plugin in Figure 7.3 always gives a fixed name back it can be instantiated only
one time. To change this the structure of type plugDefinition has to be allocated
dynamically and the plugin name contained inside the structure must be made unique
for each invocation. This can be achieved by integrating the instance number cnt into
the name. cnt contains the number of calls to the function plug get info(). Thus
plug get info() is modified to:

45

'

&

$

%

#include "main/plugin.h"

static void min_init (plugDefinition *plug,
grabParameter *para, int argc, char **argv)

{
...

}

...

static plugDefinition plug_min = {
"Min",
PLUG_ABI_VERSION,
min_init,
min_init_options,
min_cleanup,
min_process

};

plugDefinition *plug_get_info (int cnt, BOOL *append)
{

*append = TRUE;
return &plug_min;

}

Figure 7.3: The principal structure of a minimal plugin.

*append = TRUE;
plugDefinition *def = calloc (1, sizeof(plugDefinition));
*def = plug_min;
def->name = g_strdup_printf ("Min%d", cnt);
return def;

Now any number of instances of the plugin are possible.
Plugins in C++ can be realized in the same way as described above. Alternatively

one can use the C++ class shown in figure 7.4. By deriving from this class the creation
of a plugin instance is also possible. In this case the factory function plug get info()
is modified to

*append = TRUE;
ICEWING::Plugin* newPlugin =

new ICEWING::MinPlugin (g_strdup_printf("C++Min%d", cnt));
return newPlugin;

where ICEWING::MinPlugin is a class derived from ICEWING::Plugin. A C++ variant
of the “min” plugin can be found in the iceWing source distribution in the diretory
“plugins/min cxx/”.

46

'

&

$

%

namespace ICEWING {
class Plugin : public plugDefinition {
public:

Plugin (char *name);
virtual ~Plugin() {};

virtual void Init (grabParameter *para, int argc, char **argv) = 0;
virtual int InitOptions () = 0;
virtual bool Process (char *ident, plugData *data) = 0;

};
}

Figure 7.4: The class Plugin, which allows the creation of plugins in C++ in a manner
suitable for C++.

For simplified creation of new plugins a plugin generator is available: icewing-
plugingen. icewing-plugingen is a shell script which expects up to three arguments:

> icewing-plugingen [-c|-cxx|-cpp] plugin-name short-name

If “-c” is given, which is as well the default, a new C-plugin of name “plugin-name” is
generated in the current directory. If “-cxx” or “-cpp” is given, a C++-Plugin deriving
from the class Plugin is created. For the C-Version function and type names in the
generated source start with “short-name”. Besides the needed sources for the plugin
a Makefile is generated and the plugin is directly compiled for immediate testing.
The plugin is kept short and simple, but shows already data observation, easy user
interface generation, and rendering of data in a window.

7.2 Communication between plugins

Within a main loop iceWing continuously invokes the loaded plugins. The order of
the invocation can be determined by the plugins themselves. For this and for further
communication of the plugins iceWing offers several facilities. Plugins can exchange
data between each other. They can observe the storing of data by other plugins
and they can make functions available to other plugins and invoke functions made
available. Details about these communication possibilities will now be given.

Data exchange

In iceWing data consists of a string as an identifier, a reference counter and a pointer
to the concrete data. This data element is deposited and made available for other
plugins by the function

typedef void (*plugDataDestroyFunc) (void *data);

47

void plug_data_set (plugDefinition *plug, const char *ident,
void *data, plugDataDestroyFunc destroy);

The function destroy() is invoked when the reference counter of the data has reached
zero at the end of a main loop run. For access to data provided by other plugins there
are the functions

typedef struct plugData {
plugDefinition *plug; /* plugin which stored the data */
char *ident; /* ident under which the data was stored */
void *data; /* the stored data */

} plugData;

plugData* plug_data_get (const char *ident, plugData *data);
plugData* plug_data_get_new (const char *ident, plugData *data);
plugData* plug_data_get_full (const char *ident, plugData *data,

BOOL onlynew, const char *plug_name);

With plug data set() one can store several data elements attached to one identifier.
With the parameter data of plug data get() one can access them successively. If the
value of this parameter is NULL then the data element first stored under the identifier
is returned. When invoked again with the previously returned pointer the following
data element is returned. If plug data get new() is used only data elements stored
since the start of the current main loop run are returned. Data elements stored
during previous runs, which where not freed because of increased reference counts,
are skipped. If plug data get full() is used, the returned data elements can be
additionally restricted to these elements, which were stored by a special plugin.

Every invocation of plug data get() or one of its variants increments the reference
counter of the returned data element. Increasing the reference counter of data, to
which a pointer is already available, can be done with the function

void plug_data_ref (plugData *data);

The references can be released with the function

void plug_data_unget (plugData *data);

Every successful call to plug data get() and every call to plug data ref() requires
a succeeding call to plug data unget() to let the reference count drop again. Finally
this leads to an automatic call to the destroy() function for releasing the data.

Observing data

So far it is not clear when iceWing invokes the process() functions of the plugins.
This is determined by the observation of data provided by other plugins. With the
function

48

void plug_observ_data (plugDefinition *plug, const char *ident);

a plugin can observe the storage of data with the identifier ident. When new data
with this identifier gets stored, the process() function of the observing plugin is
invoked.

Data is considered new, if it is stored within the current main loop run. At the start
of a main loop run iceWing stores pseudo data under the identifier "start". Every
plugin that observes this data will be invoked at the start of every main loop run.
These plugins can now store data themselves using their own identifiers to initiate the
call of other plugins observing these identifiers. If there are no more plugins registered
for the identifiers of newly stored data, the next main loop run is initiated by again
storing pseudo data under the identifier "start". The different plugins are invoked
sequentially. Only if the process() function of the previous plugin is finished the
process() function of the next plugin is invoked. Even if there were multiple data
elements stored under the same identifier the plugins are invoked only once. Plugins
that should process all data elements stored under the same identifier must fetch them
sequentially with plug data get(). An alternative approach can be realized with the
function plug add default page(). See page 53 for more details. By invoking

void plug_observ_data_remove (plugDefinition *plug, const char *ident);

a plugin can stop its observation of data with a certain identifier.

Function exchange

The communication method described in the last paragraph is purely data driven.
Additionally there is the possibility for plugins to provide their functions to other
plugins. This can be achieved by the function

typedef void (*plugFunc) ();

void plug_function_register (plugDefinition *plug,
const char *ident, plugFunc func);

Again with the help of the identifier ident a plugin can access the registered function
by means of the function

typedef struct plugDataFunc {
plugDefinition *plug; /* plugin which registered the function */
char *ident; /* ident under which the function was registered */
plugFunc func; /* the registered function */

} plugDataFunc;

plugDataFunc* plug_function_get (const char *ident, plugDataFunc *func);

Similar to data storing many functions can be registered under the same identifier. By
setting func to NULL the first function registered under an identifier can be accessed.
Consecutive calls to plug function get() with a previously returned pointer yields
the successively registered function. With the function

49

void plug_function_unregister (plugDefinition *plug,
const char *ident);

a provided function can be withdrawn by the plugin which provided it.

7.3 Graphical abilities

The graphical abilities of iceWing can be divided into three groups. The first group
incorporates functions for generating a user interface consisting of widgets. The sec-
ond group contains functions for the display of various data. Furthermore there are
functions not classifiable into one of these groups directly. The generation of the
graphical interface mainly takes place in the init options() function of each plugin.
However, every function described in this chapter can be invoked at any later time as
the user wishes. In the following sections these abilities will be now introduced.

7.3.1 Generating a user interface

Every widget that could be generated with iceWing functions follows the same
philosophy. During the generation of the widget the address of a variable is passed
to the generating function. This variable is modified in the background by iceWing,
without the need of any help by the plugin. Indeed the plugin has no means to modify
the variable directly. Besides this, the screen layout for the widgets is predetermined
for the most part. This limitation yields two benefits:

• The creation and management of widgets gets very simple for the plugins.

• There is the possibility of automatically loading and saving widget values. This
functionality is completely independent of any support coming from the plugin.
Moreover, it is even possible to remotely set the widget values via DACS again
without the help of the plugin.

Figure 7.5 gives an overview of all widget types iceWing can create. The “demo” plu-
gin, which was already used during the Quicktour (see section 3.1), uses all these wid-
gets and additionally gives an overview over different render capabilities of iceWing.
It can be found in the iceWing source distribution in the diretory “plugins/demo/”.

Graphical user interface

Widgets can be created on every page on the main window of iceWing, in the context
menu of display windows and in the “Settings” window of display windows. Figure 7.1
shows all these possible positions. A new page in the main window of iceWing can be
created with the function

int opts_page_append (const char *title);

50

Figure 7.5: All widgets iceWing provides for user interface generation.

title denotes the name to be displayed in the “Categories” list. If title contains a
period or a space (".", " "), the “Categories” list will be displayed in a tree structure.
The return value of the function opts page append() is an index that has to be
specified during the creation of a widget. The function

int prev_get_page (prevBuffer *b);

returns the index of the “Settings” window of display windows. This enables the
creation of widgets in these windows.

Widgets can be created with different functions for the different widget types. The
functions are all named according the pattern opts <widgetname> create(). Exam-
ples of four widget types are

void opts_separator_create (long page, const char *title);
void opts_button_create (long page,

const char *title, const char *ttip,
gint *value);

void opts_entscale_create (long page,
const char *title, const char *ttip,
gint *value, gint left, gint right);

void opts_float_create (long page,
const char *title, const char *ttip,
gfloat *value, gfloat left, gfloat right);

The parameter list of the functions again follows always the same pattern. page

denotes the page the widget should appear on. New widgets are always added at
the bottom of the specified page. title denotes the name of the widget. In the
examples in figure 7.5 it was for example "Enter some text" for the string widget
and "EntScale" for the integer slider. This name together with the page name has to
be unique throughout the whole program as it is also used as the identifier of the widget
itself. The resulting identifier is "pagetitle.widgettitle". With this identifier the

51

widget is addressable at any later time. Alternatively, to create the same widget, page
can be set to -1 and title to the complete identifier, i.e. "pagetitle.widgettitle".

If a widget with the identifier "pagetitle.widgettitle" already exists, the newly
created widget replaces the old one. This allows to change any widget parameter at
any time, for example the allowed range of values for a slider.
ttip specifies the tool tip of the widget. In value the address of a variable has

to be given. This variable is modified by iceWing in the background in a dedicated
thread. The plugin does not need to care about querying the widget and setting the
variable. It can simply use the variable. The remaining parameters specify the valid
values of the variable value.

Additionally it is possible to set the value of a widget at a later time and to delete
a created widget with the two functions

long opts_value_set (const char *title, void *value);
gboolean opts_widget_remove (const char *title);

title denotes the identifier of a widget. In case of an integer the value to be set is
passed directly in value, otherwise it is a pointer to the value to be set. For example
to set the value of the widget "EntScale" on page "demo" in figure 7.5 to 3 one can
use

opts_value_set ("demo.EntScale", GINT_TO_POINTER(3));

whereas to set the "float" widget

float newval = 3.0;
opts_value_set ("demo.Float", &newval);

must be used.
The current settings of all the different widgets created with one of the

opts <widgetname> create() functions can be loaded and saved to/from files with-
out any plugin interaction in the graphical user interface. See paragraph 4.3 for more
details about these files. Sometimes some of these settings should not be saved or
loaded. This can be achieved with the functions

void opts_defvalue_remove (const char *title);
void opts_save_remove (const char *title);

For both functions title denotes the identifier of the to be affected widget.
The function opts defvalue remove() prevents, that settings from the configu-
ration files, which are automatically loaded during the start of iceWing, are ap-
plied to the given widget. This function must be called before the corresponding
opts <widgetname> create() call. Otherwise the settings were already applied.
opts save remove() prevents that the settings are saved to any configuration files in
the first place.

52

Nongraphical interface

The automated treatment of variables of widgets for loading and saving can be
extended to variables that don’t have a widget assigned. This is provided by the
functions

typedef enum {
OPTS_BOOL, OPTS_INT, OPTS_LONG, OPTS_FLOAT, OPTS_DOUBLE, OPTS_STRING

} optsType;

typedef void (*optsSetFunc) (void *value, void *new_value, void *data);

void opts_variable_add (const char *title,
optsSetFunc setval, void *data,
optsType type, void *value);

void opts_varstring_add (const char *title,
optsSetFunc setval, void *data,
void *value, int length);

title corresponds to the title variable of the widget functions. value specifies the
address of the variable to be loaded and saved. With type their type is declared. If
func is set to NULL then in addition to be saved automatically in the background the
variable is also loaded and set automatically. Otherwise the function setval with
the additional argument data gets invoked, if the variable should be modified. This
function is then responsible for the modification of the variable. With the function
opts varstring add() one can additionally specify a maximal length for a string,
which will be not exceeded during the setting of the string.

Plugin support

There are certain standardized functions which are (a) controllable by widgets and
(b) interesting for a lot of plugins. In addition most plugins need at least one page to
place their widgets on. To simplify this there is the following function which creates
a new page with two special widgets:

typedef enum {
PLUG_PAGE_NOPLUG = 1 << 0,
PLUG_PAGE_NODISABLE = 1 << 1

} plugPageFlags;

int plug_add_default_page (plugDefinition *plugDef,
const char *suffix,
plugPageFlags flags);

This function creates a new page in the main window of iceWing under the name
’plugDef->name" "suffix’ and returns its index. Furthermore up to two widgets are

53

created whose functionalities are completely realized by iceWing. The first widget tog-
gles the invocation of the process() function of the plugin. If PLUG PAGE NODISABLE

is given in flags, this widget is suppressed.
The second widget is created if PLUG PAGE NOPLUG is not set in flags. With this

widget one can control which data elements of which other plugins should be passed
to the plugin plugDef. Normally the function process() of the plugin plugDef is
invoked as soon as data with an identifier observed by plugDef is provided by any
other plugin. Even though there could be more than one data element available under
the observed identifier at the time the plugin is invoked only once. The plugin can
get the remaining data elements by using the function plug data get().

With the function plug add default page() this behavior is changed. If in this
case nothing is entered in the second widget, the plugin is invoked separately for all
available data elements of all plugin, who’s identifier the plugin is observing. When
there are names of plugins in the widget, the plugin is invoked only for these plugins.
The plugin is not invoked for data elements from other plugins.

Since this widget supplies iceWing with additional information about the interde-
pendencies between the registered plugins, the order of invocation of the plugins can
be changed accordingly if necessary. If multiple plugins observe the same identifier
"ident" normally the order of their invocation is not determined. However, if in one
plugin’s plug add default page() widget is specified that the plugin want’s to get
"ident" from one of these other plugins, then this other plugin is always invoked
first. As an example suppose that plugins “A” and “B” both observe "image". If
now the user specified in the widget of plugin “A” that “A” should get "image" from
plugin “B”, plugin “B” is always invoked before plugin “A” if data of type "image"

is available.
For easy creation of names of the form ’plugDef->name”suffix’ there is the func-

tion

int plug_name (plugDefinition *plugDef, const char *suffix);

which returns a pointer to a per-plugin-instance string of the form
’plugDef->name”suffix’. This often comes handy for accessing widgets on
the page created for example by plug add default page() but as well to create
pages with opts page append() or to access widgets on these pages. All widget
names in iceWing have to be unique. If these pages use this naming scheme as well, the
names are easily made unique. The same is true for the function prev new window(),
where this nameing scheme should be used as well.

7.3.2 Graphical display of data

iceWing offers various possibilities for data visualization. Plugins can create any
number of data display windows. The user may at any time open and close these
windows, scroll and zoom in them, save their contents or display meta informations

54

about their content. During these actions vector objects like lines and ellipses get
correctly redrawn at the desired zoom level. All these actions do not involve the
plugins, since the display windows are managed completely by iceWing.

Window management

New windows can be created by the function

typedef struct prevBuffer {
...
guchar *buffer; /* buffer for the image */
int width, height; /* width, height of the buffer */
GtkWidget *window; /* window in which the buffer is displayed */
...

} prevBuffer;

prevBuffer *prev_new_window (const char *title, int width, int height,
gboolean gray, gboolean show);

title is on the one hand the name of the window and on the other hand an identifier.
This identifier together with the names of the pages created with opts page append()

in the iceWing main window has to be unique throughout the whole program. If the
name contains a period (".") the windows in the “Images” list in the main window
will be displayed in a tree structure. width and height specify the initial size of
the window. The user can resize the window at any time. Specifying -1 means that
the default values for width and height are taken. gray determines if the content of
the window is displayed in gray or in color. If show = TRUE the window is opened
instantly after creation. Otherwise the user has to double-click on the window title
in the “Images” list to open the window.

Bigger amounts of memory are used not before the window is opened the first
time. Every drawing function of iceWing first tests if a window is actually open
before drawing and returns immediately if this is not the case. So the consumption of
computer resources stays low even if many windows are created and outputs in them
are produced without any further checks. Sometimes it is useful to check whether a
window is open before any complex computations of output data for the window is
carried out. This can be done with (buffer->window != NULL). With

void prev_free_window (prevBuffer *b);

one can remove and free a window previously created with prev new window().
The user can scroll and zoom in the windows at any time. Additionally these actions

can be performed by the plugin using the function

void prev_pan_zoom (prevBuffer *b, int x, int y, float zoom);

55

The content of window b is then displayed at location (x,y) with a zoom value of
zoom. If any of the parameters are below zero, the respective old values are retained.

Some plugins need informations about mouse actions and key presses in a particular
window. They can be retrieved with the functions

typedef enum {
PREV_BUTTON_PRESS = 1 << 0,
PREV_BUTTON_RELEASE = 1 << 1,
PREV_BUTTON_MOTION = 1 << 2
PREV_KEY_PRESS = 1 << 3,
PREV_KEY_RELEASE = 1 << 4

} prevEvent;
typedef void (*prevButtonFunc) (prevBuffer *b, prevEvent signal,

int x, int y, void *data);
typedef void (*prevSignalFunc) (prevBuffer *b, prevEventData *event,

void *data);

void prev_signal_connect (prevBuffer *b, prevEvent sigset,
prevButtonFunc cback, void *data);

void prev_signal_connect2 (prevBuffer *b, prevEvent sigset,
prevSignalFunc cback, void *data);

If one of the events specified by sigset occurs, which is triggered by a mouse button
or a key press in window b, the function cback() with the additional argument data
is invoked. cback() is additionally provided with the event occurred and further
information about the event. The function prev signal connect() only enables the
handling of mouse events whereas prev signal connect2() permits the handling of
both mouse events as well as key press events. The effects of zooming and scrolling
are completely removed from the passed mouse coordinates.

The display of graphical objects

Polygons

Lines Circles

Text

Images

Rectangles

Ellipses and Arcs

Figure 7.6: All graphical elements iceWing can render.

56

iceWing provides the possibility to display miscellaneous graphical primitives in the
windows created by prev new window(). Figure 7.6 gives a summary of all primitives
iceWing can create. The display of the objects is accomplished in multiple stages. The
first step is optional and, if enabled, copies all of the original data which is needed
for the display of an object. With this data iceWing can redraw the image without
interaction with the plugin – scrolling and zooming in high quality gets possible with-
out the plugins help. Subsequently the objects are displayed in an off-screen buffer
using the current scroll and zoom values. This buffer contains the precise section of
the image which will be seen in the window and hence can be used for redrawing the
window - again without the involvement of the plugin. In a final step the buffer is
then drawn into the window.

All objects can be displayed using different functions with a common interface. Two
examples of these functions are

typedef enum {
PREV_IMAGE,
PREV_TEXT,
PREV_LINE,
...
PREV_NEW = 30

} prevType;

#define RENDER_THICK (1<<30) /* use thickness for vector objects */
#define RENDER_CLEAR (1<<31) /* clear the buffer */

void prev_render_data (prevBuffer *b, prevType type, const void *data,
int disp_mode, int width, int height);

void prev_render_list (prevBuffer *b, prevType type, const void *data,
int size, int cnt,
int disp_mode, int width, int height);

Every render function gets different standard arguments. Window b is the window in
which the object is displayed. With width and height one can specify the total size
of all objects which are still inside the window. These latter two values are needed to
compute the correct zoom factor for the display of the object if the “Fit to window”
display mode for the window is chosen. If these values are -1 or RENDER CLEAR is not
set in disp mode, the last values for the buffer b are used instead. With disp mode the
rendering can be influenced. If RENDER CLEAR is specified the contents of the whole
window is cleared and the internal copies of all parameters of former drawing actions
are freed before drawing. RENDER THICK enables the rendering of thicker lines by
means of a special setting. See the function prev set thickness() for more details.
The remaining arguments specify the particular object, which should be displayed
in the window. With prev render data() an arbitrary object can be displayed and
prev render list() displays an array of objects of the same type. type specifies the
type of the objects. data is in the first case a pointer to the data of one object and in

57

the second case a pointer to the data of an array of objects. In the second case cnt

gives the length of the array and size denotes the size of an array element.
Data for objects to be displayed must be specified via structures. For example for

lines it is

typedef struct {
iwColtab ctab;
int r, g, b;
int x1, y1, x2, y2;

} prevDataLine;

The structures for the other available objects are similar. ctab determines how r,
g and b should be interpreted. For example if ctab is set to IW RGB then they are
interpreted as a point in the RGB color space, with IW YUV as a point in the YUV
color space, or with a pointer to a color table r would be interpreted as an index
in this color table. Specifying -1 for r, g, or b has a special meaning. In this case
the corresponding color channel is not modified during the rendering. Finally x1,
y1, x2 and y2 are the coordinates of the endpoints of the line. To enable subpixel
accurate displaying of objects there are float data type variants of every vector object
structure, for example prevDataLineF for lines. For displaying these data elements
there are corresponding prevType values like PREV LINE F for lines.

To simplify the call to prev render list() there is a wrapper for every object
type. For example arrays of lines or images can be displayed also using the functions

void prev_render_lines (prevBuffer *b,
const prevDataLine *lines, int cnt,
int disp_mode, int width, int height);

void prev_render_imgs (prevBuffer *b,
const prevDataImage *imgs, int cnt,
int disp_mode, int width, int height);

In image processing very often one needs to display an image. For the frequent case
of 8 bit images there is the function

void prev_render (prevBuffer *b, guchar **planes,
int width, int height, iwColtab ctab);

with which no structure has to be filled in this case. Additionally by setting
RENDER CLEAR this function clears the complete window before rendering the image.
To render other types of images – iceWing also supports images of type 16 bit int, 32
bit int, float, and double – or to support other forms of flexibility the previously in-
troduced function prev render imgs() or the different general render functions must
be used.

For simplified text output there is additionally the function

void prev_render_text (prevBuffer *b,
int disp_mode, int width, int height,
int x, int y, const char *format, ...);

58

This function invokes sprintf() internally and and renders the returned
string. The string can contain additional formatting instructions to mod-
ify color, type and alignment of the rendering. For example by embedding
<fg="255 0 0" bg="0 0 0" font=big> it can be switched to a big red font on a
black background. Further details about the formatting instructions can be found in
the header “Grender.h”.

The rendering of objects can be influenced further by the two functions:

void prev_set_bg_color (prevBuffer *buf, uchar r, uchar g, uchar b);
void prev_set_thickness (prevBuffer *buf, int thickness);

prev set bg color() determines with which color the window is cleared if
RENDER CLEAR is set. With prev set thickness() lines are drawn with the speci-
fied thickness if RENDER THICK was set during the output of objects.

All functions for drawing objects introduced so far draw the objects incrementally
in an off-screen buffer assigned to the appropriate window. In a final step this buffer
can be rendered in the associated window using the function

void prev_draw_buffer (prevBuffer *b);

The steps to follow to render something in a window using iceWing can be summarized
as:

Create a new window b with prev new window(). This is the necessary first
step and can be well placed in the init options() function of the plugin. But
any later executed code paths are as well possible.
LOOP

Render various objects in the off-screen buffer of window b using several of
the prev render xxx() functions. RENDER CLEAR must be set before the first
function is invoked to clear the window beforehand.
Render the off-screen buffer in window b by invoking the function
prev draw buffer().

Besides this described interface with the prev render xxx() functions to render ob-
jects there is also another interface consisting of prev drawXxx() functions. This is
an interface with lower abstraction which for example ignores scroll positions as well
as zoom adjustments. Because of this it should not be used most of the time. If this
low level interface is necessary nevertheless, further details about it’s usage can be
found in the according header files.

7.3.3 Further graphical functionalities

If the program has to be terminated this should never be managed using the regular
ANSI function exit(). For this one should always use the function

59

void gui_exit (int status);

The direct call to exit() can lead to a segmentation violation as well as to a freeze
of the complete program. As various graphical abilities are realized in a dedicated
seperate thread, an accurate synchronization with this thread has to be performed
before termination. This synchronization is ensured by gui exit().

In iceWing images are managed by the structure

typedef enum {
IW_8U, IW_16U, IW_32S, IW_FLOAT, IW_DOUBLE

} iwType;

typedef struct iwImage {
guchar **data; /* the real image data */
int planes; /* number of planes available in data */
iwType type; /* type of data */
int width, height; /* width, height of the image in pixel */
int rowstride; /* distance in bytes between two lines */

/* if >0: color images are interleaved in data[0] */
iwColtab ctab; /* color space used in data */

} iwImage;

In this structure image data can be stored in various types and arrangements. With
iwType the type of data is specified ranging from 8 bit unsigned to double. The
arrangement of the image data can be planed as well as interleaved. In a planed
arrangement the color planes are provided separately in the fields data[0], data[1],
. . . , data[planes-1]. In an interleaved arrangement data[0] contains all the color
information where the particular color values of a pixel are juxtaposed in the array.
For example for planes=3 in the RGB color space first the red color value of the first
pixel is stored followed by the green and blue values. Subsequently the values of the
second pixel are stored in the same way until finally the values of pixel width*height
are reached and stored in data[0]. Images of all these types and arrangements can
be created, released, loaded, saved, and also displayed.

There are several functions for managing images of which some of the important
ones are:

gboolean iw_img_allocate (iwImage *img);
iwImage* iw_img_new (void);
iwImage* iw_img_new_alloc (int width, int height,

int planes, iwType type);
void iw_img_free (iwImage *img, iwImgFree what);
iwImage* iw_img_load (const char *fname, iwImgStatus *status);
iwImgStatus iw_img_save (const iwImage *img, iwImgFormat format,

const char *fname, const iwImgFileData *data);

Further details about these and several other functions for managing images can be
found in the header file “Gimage.h”.

60

7.4 Further abilities

Besides the so far explained abilities iceWing has further functionalities in the graph-
ics as well as in some other areas. In this section some of them will be introduced
more closely where some others will not be detailed much. For example in the header
file “output.h” there are functions to ease the use of DACS. These include functions
for image output, for the output of status messages and for the output of general
data via streams. Furthermore, it is possible to make functions available for RPC
communication via DACS. All these functions manage the registration with DACS,
the error handling and the generation of unique stream names and function names.

Further examples of useful functions include “session management” or functions
that allow the registration of new graphical primitives that can then be used with the
general rendering functions. Further details of these as well as the so far presented
functions can be found in the appropriate header files of iceWing.

The “grab” plugin

A central plugin is the in iceWing integrated plugin “grab”. It enables the import
and the delivering of a series of images for further processing to other plugins. The
images can be imported from a grabber (controlled by Video4Linux 2 or FireWire
under Linux and MME on Alphas), from DACS, if encoded in the Bild t format, or
from files of various pixel formats. Once “grab” is invoked by iceWing it imports the
next image and makes it available for other plugins under the ident “image” using the
function plug data set(). For the image the YUV color space is used. The structure
that “grab” uses to provide the data is derived from iwImage, i.e. it first contains the
image and afterwards different additional data. In detail, the structure is:

typedef struct grabImageData {
iwImage img; /* the image data */
struct timeval time; /* time the image was grabbed */
int img_number; /* consecutive number of the grabbed image */
char *fname; /* image read from a file? -> name of the file */
int frame_number; /* image from video file -> frame number, else 0 */
float downw, downh; /* down sampling, which was applied to the image */

} grabImageData;

The image is allways encoded in the planed format, i.e. the color planes are provided
separately in the fields data[0], data[1], . . . , data[planes-1] of the iwImage struc-
ture. Additionally the plugin can provide the imported images via a DACS stream in
the Bild t format. By means of a DACS-function the current or optionally also past
images can be fetched from other programs in the Bild t format. If there is an ob-
server for the identifier ’’imageRGB’’, then additionally the current image is provided
in the RGB color space under this identifier using the function plug data set(). For
the storing of the data associated with “imageRGB” again the grabImageData struc-
ture is used.

61

Auxiliary functions

“tools.h” provides several smaller auxiliary routines that are frequently needed dur-
ing program development. These include functions for the output of errors, warnings,
debug messages and functions for testing assertions:

void iw_debug (int level, const char *str, ...);
void iw_debug_1 (int level, const char *str);
void iw_debug_2 (int level, const char *str, ARG1);
...
void iw_warning (const char *str, ...);
void iw_warning_1 (const char *str);
void iw_warning_2 (const char *str, ARG1);
...
void iw_error (const char *str, ...);
void iw_error_1 (const char *str);
void iw_error_2 (const char *str, ARG1);
...
void iw_assert (scalar expression, const char *str, ...);
void iw_assert_1 (scalar expression, const char *str);
void iw_assert_2 (scalar expression, const char *str, ARG1);
...

All these functions invoke sprintf() internally. The functions iw debug xxx() and
assert xxx() only produce code if the macro DEBUG is set during compilation.
iw debug xxx() only produces output if the value of level is smaller than talklevel

which can be chosen via the command line of iceWing (option “-t”, see page 4.1).
iw warning xxx() always outputs its message, whereas iw error xxx() additionally
terminates the execution of the program. The function variants without a number,
i.e. iw debug(), iw warning(), iw error(), and iw assert(), allow an arbitrary
number of arguments, but for full functionality they need either GCC or another
compiler compatible with ANSI-C99. Otherwise these variants are implemented as
functions instead of macros, which provide less information than the macro variants.

Additionally there are several functions for meassuring the execution time of pro-
gram parts. Some of them are:

int iw_time_add (const char *name);
void iw_time_start (int nr);
long iw_time_stop (int nr, BOOL show);

#define iw_time_add_static(number,name) ...
#define iw_time_add_static2(number,name,number2,name2) ...

iw time add() creates a new timer and returns an index to it. Using this index it can
be started with the function iw time start() and stopped with iw time stop().
With show = TRUE the passed time is printed to stdout immediately. Other-
wise this is done after a certain number of iceWing main loop runs. With

62

iw time add static() the initialization can be simplified. With this function a new
static variable named number is defined. This variable can be initialized by invoking
iw time add() one time. An example usage scheme is:

/* Definition of other variables */
...
iw_time_add_static (time_demo, "Demo Messung");

iw_time_start (time_demo);
/* Execution of the program part to be measured */
...
iw_time_stop (time_demo, FALSE);

The analysis of command line arguments can be simplified by the function:

char iw_parse_args (int argc, char **argv, int *nr, void **arg,
const char *pattern);

This function tests if argv[*nr] occurs in pattern where pattern is scanned without
case sensitivity. Subsequently *nr is incremented appropriately so that with the next
invocation of iw parse args() the next argument can be analysed. The EBNF format
of pattern is { "-" token ":" ch ["r"|"ro"|"i"|"io"|"f"|"fo"|"c"] " " },
where token is an arbitrary string without " " and ":" and ch is an arbitrary char-
acter. If -token is found, ch is returned by the function. The remaining optional
characters in pattern define some modifiers. "r" specifies that an additional argu-
ment is needed which will be returned using the variable arg. "i" and "f" mean
that an additional integer argument or float argument is needed, respectively. "c"
specifies that token can be continued arbitrarily. This continuation is returned using
the variable arg. Finally "o" denotes, that the string, integer, or float argument is
optional. The application of iw parse args() is best explained using an example:

void *arg;
char ch, *str_arg;
int nr = 0, int_arg;

str_arg = NULL;
int_arg = 0;
while (nr < argc) {

ch = iw_parse_args (argc, argv, &nr, &arg,
"-I:Ii -S:Sr -H:H -HELP:H --HELP:H");

switch (ch) {
case ’I’:

int_arg = (int)(long)arg;
break;

case ’S’:
str_arg = (char*)arg;
break;

case ’H’:
case ’\0’:

63

help();
default:

fprintf (stderr, "Unknown character %c!\n", ch);
help();

}
}

7.5 Using external libraries

To ease interfacing with the OpenCV computer vision library [Int05] there are
some auxiliary functions in the header file “opencv.h” in the “tools” directory. The
functions from this file only work if the plugin which calls these functions links against
the OpenCV libraries. Otherwise a symbol from the OpenCV libraries can not be
resolved.

OpenCV uses the IplImage structure for image representation. To convert to and
from the iceWing iwImage type the three functions

IplImage* iw_opencv_from_img (const iwImage *img, BOOL swapRB);
iwImage* iw_opencv_to_img (const IplImage *img, BOOL swapRB);
iwImage* iw_opencv_to_img_interleaved (const IplImage *img, BOOL swapRB);

can be used. All these functions first allocate a new image and then copy
the provided image to the newly allocated image. To free the returned image
the functions cvReleaseImage() for IplImage images and iw img free (image,

IW IMG FREE ALL) for iwImage images must be used. With the flag swapRB on the fly
conversion between RGB and BGR can be performed. If this flag is set to TRUE, the
planes 0 and 2 are swapped during conversion.

To display IplImage images in a preview window the function

void iw_opencv_render (prevBuffer *b, const IplImage *img, iwColtab ctab);

is available. The function clears the buffer by using RENDER CLEAR and subsequently
displays img in b with the color transformation ctab. This function does not cre-
ate a new copy of the image and thus is as fast as the iceWing “native” render
functions prev render() and prev render imgs(). Remember that you must use
prev draw buffer() to finally see the result on the screen.

64

Bibliography

[Int05] Intel. OpenCV – Open Source Computer Vision Library, 2005. http://www.
intel.com/research/mrl/research/opencv/.

[Jun98] Nils Jungclaus. Integration verteilter Systeme zur Mensch-Maschine-
Kommunikation. Dissertation, Universität Bielefeld, Technische Fakultät,
1998.

[Löm04] Frank Lömker. Lernen von Objektbenennungen mit visuellen Prozessen. Dis-
sertation, Universität Bielefeld, Technische Fakultät, 2004. http://bieson.
ub.uni-bielefeld.de/volltexte/2004/549/.

[Ous94] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, March 1994.

[The03] The Mathworks. Matlab, 2003. http://www.mathworks.com.

65

http://www.intel.com/research/mrl/research/opencv/
http://www.intel.com/research/mrl/research/opencv/
http://bieson.ub.uni-bielefeld.de/volltexte/2004/549/
http://bieson.ub.uni-bielefeld.de/volltexte/2004/549/
http://www.mathworks.com

Index

A
assert xxx() . 62

F
factory function 45

G
Gimage.h . 60
grabImageData .61
GTK . 44
gui exit() .59

I
iceWing . 43
icewing . 41
icewing-config . 41
icewing-docgen . 41
icewing-plugingen 41, 47
ICEWING::Plugin 46
IplImage .64
iw debug xxx() 62
iw error xxx() 62
iw img allocate()60
iw img free() . 60
iw img load() . 60
iw img new alloc() 60
iw img new() .60
iw img save format() 60
iw opencv from img() 64
iw opencv render() 64
iw opencv to img interleaved() . 64
iw opencv to img() 64
iw parse args() 63

iw time add static() 62
iw time add() . 62
iw time start() 62
iw time stop() 62
iw warning xxx() 62
iwImage . 60
iwType . 60

M
Matlab . 43

O
OpenCV . 64
opencv.h . 64
opts defvalue remove()52
opts page append() 51
opts save remove() 52
opts value set() 52
opts variable add() 53
opts widget remove() 52
opts widgetname create() 51

P
plug add default page() 53
plug data get full() 48
plug data get new() 48
plug data get() 48
plug data ref() 48
plug data set() 48
plug data unget()48
plug function get() 49
plug function register() 49
plug function unregister() 50

66

plug get info() 45
plug name() . 54
plug observ data remove() 49
plug observ data() 49
PLUG PAGE NODISABLE 53
PLUG PAGE NOPLUG 53
PLUG ABI VERSION 45
plugData .48
plugDefinition 45
Plugin

demo . 50
grab . 61
min .45
min cxx . 46

plugin . 43
prev draw buffer() 59
prev free window() 55
prev get page() 51
prev new window()55
prev pan zoom() 55
prev render data() 57
prev render imgs() 58
prev render lines() 58
prev render list() 57
prev render text() 58
prev render() . 58
prev set bg color() 59
prev set thickness() 59
prev signal connect() 56
prev signal connect2()56
prevBuffer . 55
prevDataLine . 58
prevDataLineF .58
prevType .57

R
RENDER CLEAR . 57
RENDER THICK . 57

S
shared library . 44

T
Tcl/Tk . 43
tools.h .62

W
widget .50

67

	Short overview
	Installation
	Requirements
	Installation

	User guide
	Introduction
	Quick ``on the fly'' tour
	The special plugin ``grab''

	The command line interface
	The command line parameters in detail
	Parameters of the grabber driver
	Drivers on OSF Alpha systems
	Drivers on Linux systems

	Configuration files

	The Graphical User Interface
	The iceWing render chain
	The GUI commands
	iceWing main window
	Preferences button
	Commands in category ``Other''
	The ``Plugin Info'' window
	Category ``Images'' and image windows
	Panning/Zooming the image windows

	The GUI widgets

	Programming guide
	iceWing Files
	Filesystem hierarchy
	Headerfiles overview

	iceWing -- A CASE Tool
	Overview
	Communication between plugins
	Graphical abilities
	Generating a user interface
	Graphical display of data
	Further graphical functionalities

	Further abilities
	Using external libraries

	Bibliography
	Index

